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ABSTRACT 

For a quadra t i c  ex tens ion  E / F  of a nona rch imedean  local field of char-  

acter is t ic  o ther  t h a n  2, let G = U(n,n) be the  quasispl i t  un i t a ry  group 

of r ank  n,  and  let P be the  max i ma l  parabolic subgroup  of G which sta-  

bilizes a m a x i m a l  isotropic subspace.  T h e n  P has  a Levi decomposi t ion  

P = M N  with  M -~ GL(n ,  E) .  In this  paper ,  the  points  of  reducibil i ty 

and  composi t ion  series of the  degenera te  principal  series In(s, X) defined 

by charac te rs  of M are de te rmined  completely. The  cons t i tuen t s  arising as 

t h e t a  lifts of  charac ters  of U ( m ) ' s  are identified and  their  behavior  under  

the  in ter twining  opera tor  M(s, X): In(s, X) -* In ( - s ,  ~) is described.  T h e  

case E ---- F ~) F and  G --~ GL(2n,  F )  is included. 

1. In troduct ion  

The degenerate principal series representations of split classical groups over local 

fields which are induced from a character of the maximal parabolic subgroup 

with abelian unipotent radical turn out to play a central role in the local and 
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global theta correspondence, and, ultimately, in a number of interesting problems 

in arithmetic. In the local theory, these representations are a key ingredient in 

understanding the basic structure of the local theta correspondence. Globally, 

these degenerate principal series play an essential part in the proof of an extended 

Siegel-Weil formula [20], [16]. For these and other applications, it is essential to 

know (i) all points of reducibility, (ii) the complete composition series at each such 

point, (iii) the identification of the constituents as arising from the local theta 

correspondence, (iv) the behavior of constituents under normalized intertwining 

operators, and certain other information about generalized Whittaker models and 

non-singularity. In the case of U(n, n) or GL(2n) over a nonarchimedean local 

field, all of this information is obtained in the present paper. In [7], our results 

are used to investigate dichotomy phenomena in the local theta correspondence 

for unitary groups, to calculate local L-factors, and to interpret local e-factors 

for supercuspidal representations of such groups. Our results will also allow the 

proof of the extended Siegel-Weil formula of [20] to be carried over to the unitary 

case. The expected formula has already found several applications [6], [3]. 

At the moment, our knowledge of the degenerate principal series in the gen- 

eral case is incomplete, although there are a number of partial results available. 

For example, fairly good information in the case of Sp(n) over a local field was 

obtained in [19]. The nonarchimedean symplectic case was also considered in 

[5], [11], [32]. Some results in the case of orthogonal groups were obtained in 

[12]. Finally, information in the archimedean case may be found in [1~8], for 

Sp(n,R) (items (i), (iii), and (iv), above) and [21], for U(n,n) (items (i) and 

(ii)). The combination of work of Lee [21] and Zhu [37] should finish (iii) and 

(iv) for U(n, n), and should complete (iii) in the case of Sp(n, R). 

The methods of this paper are substantially those of [19], so that  we will 

sometimes omit details. On the other hand, [19] relies on a number of results 

which exist in the literature only for the symplectic group and often without 

published proof. Thus, for example, we have given a complete discussion of the 

poles and normalization of the intertwining operator in the unitary case, based 

on an analogue of the method of [31]. Some details of this computation play an 

essential role in [7], in particular in the definition of the e-factor by the doubling 

method, and in the interpretation of the resulting root number in terms of the 

local theta correspondence. 

We now give a more precise description of our results. 
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Let F be a nonarchimedean local field not of characteristic 2, and let ElF 
be a quadratic extension. We write x ~-* 2 for the action of the non-trivial 

Galois automorphism of ElF. Write C0E for the ring of integers of E,  PE for the 

maximal ideal of dOE, and qE for the order of the finite field doE/PE. We choose, 

once and for all, a generator IrE for PE, and normalize lIE via I 'KEIE : qE 1. 
Similar notations will be used for F,  save that we will not fix a particular choice 

o f  71" F . 

Let G be the isometry group of the skew Hermitian form defined on the space 

of row vectors W = E 2n via 

(0 
(1.1) (u,v) = ujtf~, with J = -1,~ " 

Thus g E GL(2n, E) belongs to G if and only if g J  t~ = j .  G has a maximal 

parabolic subgroup P = MN given by 

{ (0 0) } (1.2) M :  m(a)= t~-I  l a E G L ( n , E )  , 

N-={n(b)= ( In b )  ,b= tbEM(n,E)} 
0 in 

For a given unitary character ~( of E • and for s E C, we consider the induced 

representation of G realized by the space of functions 

(1.3) 

I(s, ~) = {O: G ~ C smooth I O(n(b)m(a)g) = x(det(a))] det(a)iE+~O(g) 

for all g E G, re(a) E M, and n(b) E N}, 

where G acts by right translation. This is normalized induction, so that  Re(s) = 0 

is the unitary axis. 

Since we wish to describe the quasi-character ~(] I~ by the pair (s, X), it will 

often be convenient to normalize s and ~( to make this correspondence unique. 

Rather than requiring that  ~((TrE) = 1 for our fixed choice of ~rE, as in [33] or 

[19], it will be more convenient to choose s and X so that  the pair satisfies one 

or both of the properties below: 

(P1) X(~rE" eE) = 1, 

(P2) Im(s) E [O, log~qE) ) . 
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The pair (s, X) is easily made to satisfy (P1) by a shift in s, and we can also 

require that Im(s) E [0, 2~ 2~ �9 Z, ) by merely shifting s by an element of 

which does not change I1~. This still leaves some ambiguity, however: if X1 and 
7ri X2 satisfy (P1), then Xll I~ = X211~ implies only that Sl - s 2  E log-~E)"Z. So for 

s ~ ~i if necessary, our given XI IE, we can replace X by XII and s by s log(qE), 

so that  s satisfies (P2) and X still satisfies (P1). This then makes the pair (s, X) 

unique. If X satisfies (P1), we will say that X is normalized, while if both (P1) 

and (P2) hold, then the pair (s, X) is normalized. 

We will frequently write ~ for the character )~(x) = X(~) -1. Notice that  X = 

if and only if either XIF• = 1 or XIF• = ~ E / F ,  this last denoting the unique 

non-trivial quadratic character of F • with kernel equal to NE(E • ). 

The points of reducibility of I(s, X) are given by the following theorem: 

THEOREM 1.1: Let (s, X) be normalized as above. 

(1) If  x r ~, then I(s, X) is irreducible for all s. 

(2) I f  X[F• = 1, then I(s, •) is irreducible except when 

{ n  n n n }  
s e - ~ , l -  ~ ,2  2 ' " "  2 

(3) If  X[F• = eE/F, then I(s, X) is irreducible except when 

( n - i  . . . .  n - 1  n - I  n - l )  
S C 2 ,1 2 , 2 -  2 " ' " - - ~  " 

Note that, in each case, the points of reducibility consist either of integral 

or half-integral points, and that I(O, X) is reducible if and only if XIF• = 1 

and n is even, or X[F• = eE/F and n is odd. 

The statement of the theorem above may be slightly misleading, in that,  if 

one fixes a character X satisfying (P1) and allows s to vary over all of C, then 

the pattern of points of reducibility is a bit more complicated than even the 

usual ~ 2 ~ i  �9 Z discrepancy would allow. For example, when E / F  is unramified, 

Xt 1 ~  restricted to F equals (X[F• and in normalizing s, cases (2) and 

(3) of the theorem may be permuted. On the other hand, when E / F  is ramified, 

I [ ~  = 1 on F, and all translates by ~i �9 Z of the values of s given above 

are points of reducibility. 

At each of the points of reducibility described above, the constituents of I(s, X) 

arise from the images of certain representations of G associated to Hermitian 
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forms via the Weil or oscillator representation. If V is a non-degenerate Hermitian 

vector space with dimE(V) = m _> 1, then we can view U(V) x G as a dual 

reductive pair in the larger symplectic group Sp(4mn, F). If Xlt• = eriE~f, then 

X can be used to construct a splitting of the inverse image of G sitting in the 

metaplectic cover of Sp(4mn, F) ([15]). The Weil representation then leads to 

a representation w of G in the Schwartz-Bruhat space S(V'~), and in fact, for 

�9 $(V~),  the function w(g)~(0) lies in the space I(so, X) for so -- m~-,~ We 

denote the image of S ( V  n) in I(so, X) by R(V, X). If X I F  • ---- 1, then X (which 

acts as a character of P)  extends uniquely to a character )(c of G. In this case, 

we let R(0, X) c I ( - 9 ,  X) be the C-linear span of Xc. These spaces form the 

constituents o f / ( so ,  X) as follows. 

THEOREM 1.2: Suppose that XIF• = e'~/F and So = ~ for some m > O. This 

accounts for all points of reducibility of I(so, )(). Whenever m >_ 1, let V1 and 

V2 be the two inequivalent non-degenerate Hermitian vector spaces over E of 

dimension m. These are distinguished by det(Q{) �9 F x /N~(EX) ,  where Q{ is 

some choice of Hermitian matrix realizing the form on V~. 

(1) I f  m = 0, then R(O, X) is the unique irreducible G-submodule contained in 

1 ( - 9 ,  X), and I ( - ~ ,  x)/R(O, X) is also irreducible. 

(2) I f  l <_ m <_ n, so that - ~  < So <_ O, then R(V1,x) and R(V2, x) are 

irreducible and inequivalent, R(V1, X) �9 R(V2, X) is a submodule of  I(so, X), 

and 

I ( so, X) / ( R(V1, X) r R(V2, X) ) 

is irreducible. In particular, if m = n, then R(V1, X) @ R(V2, X) = I(0, X). 

(3) I f  n < m < 2n, so that 0 < so < 9, then R(V1, X) and R(V2, X) are distinct 

maximal submodules of I(so, X), so that I(so, X) = R(V1, X) 4- R(V2, X). 

Also, R(V1, X) ~ R(V2, X) is the unique irreducible submodule of I(so, X)- 

(4) I f  m = 2n, then let V1 be the split Hermitian space of dimension m, and 

V2 the other space of the same dimension. In this case, R(V2, X) is the 

unique maximal submodule of I (~ ,  X), and R(V2, X) is irreducible with 

codimension 1. In addition, R(V1, X) = I (~ ,  X)- 

(5) Finally, i f  m > 2n, so tha t / ( so ,  X) is irreducible by Theorem 1.1, then the 

submodules R(Vi, X) are both equal to all o f / ( so ,  X). 

As with the analogous representations for the symplectic group ([19]), the 
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intertwining operator 

Isr. J. Math. 

(1.4) M(s, X): I(s, X) '--* I(-s,  f() 

plays a central role in our calculations, and it is essential to normalize this oper- 

ator. This problem is considered in section 3. The key point is to consider the 

functional equation 

(1.5) Wz(-s) o M(s,x ) = 7(s, X,/3). W~(s), 

((3.5) in section 3) where W~(s) is the generalized Whittaker functional. Using 

'Rallis's Lemma', the computation of the factor 7(s, ~(,/3) is reduced (Proposition 

3.1) to that  of the factor in the intermediate functional equation (3.8) of the 

family of zeta integrals attached to the prehomogeneous vector space of Hermitian 

forms Herm~(E). This intermediate functional equation is then determined, 

(3.9), by the method of [31]. It should be noted that the precise information 

about 7(s, X, ~3) obtained in section 3 plays an essential role in the investigation 

of theta dichotomy and epsilon factors in [7]. Also note that, in the present paper, 

we normalize the intertwining operator M(s, ~) so that  M*(s, X) has no poles 

and is never identically zero, rather than by a condition on the local functional 

equation. Once M*(s,x) is defined ((3.27), (3.28)), it relates the quotients of 

I(s, X) on one side of the unitary axis Re(s) -- 0 to the submodules on the other. 

The kernel and image of M* (s, X) are determined for all s and )/(Propositions 5.8, 

5.10, 6.4, and 6.6). 

In section 2, we review the rough information about points of reducibility 

and constituents of our degenerate principal series representations which can be 

obtained by a direct application of the Jacquet functor. Section 3 contains the 

normalization of the intertwining operator, by the method just described. In sec- 

tion 4, we use the Weil representation to construct submodules at various points 

of possible reducibility. In section 5, we compute the Jacquet functor with re- 

spect to a maximal parabolic subgroup which stabilizes a line. This computation 

reveals an inductive structure and allows us to obtain a lot of information about 

the composition series and behavior of constituents under the normalized inter- 

twining operator. Finally, in section 6, we compute the exponents of the various 

constituents coming from the Weil representation. These allow us to complete 

our picture, and, in particular, to show the irreducibility of the 'third piece'. 
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In global applications, it is also necessary to consider the case E = F | F with 

'Galois' automorphism x = (xl, x2) H ~ = (x2, xl). The definitions given above 

can be carried over to this case, and, after a suitable idempotent projection, we 

arrive at G -- GL(2n, F) and maximal parabolic P =- M N  given by 

0 [ a, d E GL(n, F)}, 

N = { n ( b ) =  In I b e M ( n , F ) } .  

Given two unitary characters al ,  a2 of F x, we let a = (al, a2), and write (s, a) 

for the quasi-character of M defined by 

(1.7) (s, a)(m(a,  d) ) = al (a)lal~F a2(d)ldlF ~, 

determinant being understood, as usual. The local representation 

(1.8) I(s,  a) = IndGp(all [~% | a21 [~8) 

is of a type studied by Bernstein and Zelevinsky in [1], [2], and [36]. Suppose 

now that we fix a generator 7rF of the maximal ideal PF of OF. By adjusting s 

by the square root of al(TrF)/a2(TrF), we may assume that (s, a) is normalized to 

satisfy ~h(Trv) = a2(TrF) and Ira(s) E [0, 2~ ~ ) .  We have the following result. 

THEOREM 1.3: Suppose that (s, a) is normalized as above. 
1 3 n (1) I f  crl = a2 and s C { • 1 7 7 1 7 7 1 7 7  then I ( s ,~)  is reducible as a 

GL(2n, F) module. 

(2) For ali other pairs (s, a), I(s,  a) is irreducible. 

(3) Suppose that a = ~1 : a2 (in the obvious abuse of notation) and let 

so = ,~___m_~ for 0 <_ m <_ 2n, m ~ n, so that (So, a) is a point of reducibility 

for I(s,  a). Then / ( so ,  a) has a unique irreducible submodule A, and the 

quotient I(s,  (r)/A is also irreducible, and is not isomorphic to A. For 

1 < k < n, let Pn+k,n-k be the standard maximal parabolic of G with Levi 

factor isomorphic to GL(n + k, F) • GL(n - k, F). 

(a) If  n < m < 2n, so that 0 < so < n then the irreducible quotient of 

/(So, a) is isomorphic to IndGp,~,~n_.~ (a). 

(b) On the other side of the unitary axis, if  0 < m < n (so that 

<_ so < 0), then the irreducible subrepresentation o f / ( s o ,  a) 

is isomorphic to IndGp2 . . . . .  (a). 



260 S.S. KUDLA AND W. J. SWEET, JR. Isr. J. Math. 

Notice that the irreducible quotient at So > 0 is isomorphic to the 

irreducible submodule at - so  (see also (5) below), and that both are unitarizable. 

(4) These constituents are related to the Weil representation as follows. For 

a = al = a2 and So = ~ (with 1 <_ m), there is a construction of a dual 

pair H = GL(m, F) and C = GL(2n, F) in Sp(4mn, F). The appropriate 

Well representation restricts to a representation of H x G, and there is 

an injection of the H-coinvariants into a subspace of IndpC([ ]? | [ [~8o). 

We twist this subspace by a, and call the resulting submodule Rn(m, a) C 

/(so, a). 

(a) I f m  > n, then Rn(m,a)  = I(so, a). 

(b) I f  1 < m < n, then Rn(m, a) is the unique irreducible (unitarizable) sub- 

module of I(so, a). 

(c) I f  m = O, then we may set R~(0, a) -- C.  a C I ( - ~ ,  ~r). This is the unique 

irreducible submodule in this case. 

(5) There is a standard G-intertwining operator M(s,  ~r): I(s, a) --* I ( - s ,  ~), 

where a = (al, a2) is again arbitrary, and # = (a2, ax), defined by 

(1.9) M(s,  a)r = f r db 
JM (n,F) 

(see equation (2.2) for wn). This converges for Re(s) > ~. We normalize 

this operator by setting M*(s, a) -- a(s, )Co)-IM(s, a), where ~o = c~1/a2 

is a character o f F  • and 

a(s, Xc~) = (F(2S, Xa)(F(2S -- 1, Xa) ' '"  (F(2S -- (n -- 1), Xa) 

is a product of Tare zeta functions (notation as in section 3 below). Then 

for any a, M*(s, a) has an analytic continuation to the s-plane, and it is 

never identically the zero operator. When (s, a) is not a point of reducibil- 

ity, M*(s ,a)  is an isomorphism. When (s,a) is a point of reducibility, 

M*(s, a) has the unique irreducible submodule of I(s, a} as kernel, and 

maps the unique irreducible quotient of I (s, a) to the irreducible submod- 

ule of  I ( - s ,  a). 

The proof of this result is sketched in section 7. 

In a future paper, we plan to exploit the results just described to establish 

the extended Siegel-Weil formula of [20] in the case of unitary groups. For a 

quadratic extension E l F  of number fields, and for a non-degenerate Hermitian 
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space V with dimE V = m < n, the Siegel-Weil formula will identify the restricted 

tensor product of the local representations Rn(V, ~() (at nonarchimedean places of 

F which are not split in E) and R~(m, a) (at nonarchimedean places of F which 

are split in E)  as a space of automorphic forms generated by the residues of 

the Siegel Eisenstein series on U(n, n). We must, of course, include components, 

arising in the work of Lee [21], at the archimedean places. Moreover, this same 

automorphic representation will be generated by (regularized) theta integrals, 

and the coincidence of the two definitions amounts to an identification of theta 

integrals and (residues of) Eisenstein series. This application is one of the main 

motivations for the present paper. 

The authors would like to thank the referee for several helpful suggestions. 

2. Jacquet  modules  

First, we define a bit more notation. 

H-module, then let 

If H D K are /-groups ([1]) and V is an 

(2.1) V(K)  = s p a n c { k . v -  v I k E K and v E V}, 

so that  VK = V /V(K)  is the Jacquet module of V with respect to K,  a 

NormH(K)-module.  In particular, for any G-module V, we can regard VN as 

an M-module (or as a P-module with N acting trivially). We will frequently 

regard characters of E X as defining characters of GL(n, E) via x(a) = x(det(a))  

for a E GL(n, E).  The relative norm and trace of the extension E / F  will be 

denoted by NF E and T E,  respectively, while the trace of a matrix x E M(n, E) 

will be written tr(x).  

LEMMA 2.1: The Jacquet module I( s, X)N has an M-stable filtration 

I(s, X)N = I ~ D 11 D "" D I n D I n+l = 0 

with successive quotients 

z x) = r / r  § _- 

where Q~ c GL(n, E) is the maximal parabolic subgroup of the form 
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and ~ is the character of Qr given by 

~: ( ;  ; )  = x(a)~(b)laIT-~-~lbIE :++. 

The induction above is normalized by 

( ) (  (0)  .... 5~ r a * A(GL(n)) '~ �89 . ~ b -~ 0 b = \  A(Qr) ] b =lalEI IE , 

so that f E Ind~L<n)(~r) satisfies f(pg) �89 = ~(p)SQ~(p)f(g) for all p E Qr, g E 
GL(n, E).  

Sketch of proof First of all, we choose double coset representatives wr for 

P\G/P: for 0 < r < n, let 

(2.2) w, = ( l~-r 0 0 0 / 
i 0 0 lr 

0 l n - r  0 " 
- l r  0 0 

n 
Then the relative Bruhat decomposition holds: G = I_[ j=oPwj P. Fixing s and 

x, let j0  __ i(s ,  x), and for 1 < r < n + l ,  j r  = {f  E j0  I f = 0 ~  
= n p 

Alternately, define jn+ l  0, and j r  = {f  E I(s ,x)[supp(f)  C ]_Ij=rPwj } 
for 0 < r < n. Also define subgroups of N for 0 < r < n by 

{ (00 ~ 
We then have a P-intertwining map 

(2.3) j r  ___. ind~L(,~)~ (~r), 

+,  , {m(a)~ /y O(W~nm(a))dn } 
(N acting trivially on the right-hand space). Modulo checking convergence, it 

is easily seen that  this is well-defined, and that the map factors through jr+1. 

Gustafson checks in a similar situation [5] that the integral converges, that  the 

map is surjective, and that the kernel of the map j r  / j r + ,  ~ ind~L(n)(~ r) equals 

the space (Jr/J~+l)(N). By the exactness of the N-Jacquet functor (see [1]), we 

then have an M-module isomorphism of J~/J~N +1 with the space Ind~L(n)(~r). 

Setting I r = J~v for each r finishes the proof. I 

The proofs of the following two results are the same as those of Propositions 

2.2 and 2.3 in [19], and hence are omitted. 
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PROPOSITION 2.2: Suppose that (s, X) is normalized. Then 
(1) 

3 , 1 , 3 , ' " ,  2 d i m H o m v ( I ( s , x ) , I ( - s , ~ ) )  < 2 i f x  = f~ and s 6 {0, 1 3 n - l } ,  
- 1 otherwise. 

(2) 

dim Hom(I(s,X),I(s,X))G - < { 21 if XotherWise.= ~ and s = 0, 

PROPOSITION 2.3: Let X be normalized, and suppose that 7r is a G-submodule 

of I(s ,X).  I f  x = f( and 

n - r 7ri 
s E - - - +  .Z  for somer w i t h l < r < n  

2 r .  log(qE) 

then 

dim Hom(Tr, I(s, X)) <- 2, a 

and hence I ( s, ~) has at most two irreducible submodules. Otherwise, 

dim Hom(~r, I(s, X)) = 1, 
G 

and I(s, X) has at most one irreducible submodule. 

3. The intertwining operator and points of  reducibility 

In order to limit the possible points of reducibility of I(s, X), we need to do some 

background work on the intertwining operator 

(3.1) M(s,  X): I(s, X) ~ I ( - s ,  y(). 

As in the symplectic case, this is defined, for Re(s) > ~, by the integral 

(3.2) (M(s, X)O)(g) = IN O(wnng, S) dn, 

and by meromorphic continuation otherwise. We must specify the normalization 

of the Haar measure on N. Let X = {x 6 M(n,  E) I x =t /c} ,  and note that  

N ~_ X. Choose a non-trivial character r of F +, and let dx be the self-dual 

measure on X with respect to the Fourier transform defined by 

(3.3) r = f r162 dx, 
Jx  
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for r E S(X), the space of locally constant, compactly supported functions on 

X. We then have r = r  The measure used in the definition of M(s, X) 
is dn(x) = dx. Note that this measure, and hence the operator M(s, X), depends 

on the choice of r 

Our immediate goal is to normalize M(s, X) so that it is entire and non- 

vanishing (as an operator), and to determine when the normalized operator is 

injective. To do this we consider the generalized Whittaker functional Wz(s) on 

I(s, X) as in Karel's paper [13]. This functional is defined, for/3 C X and for 

Re(s) > ~, by the integral 

(3.4) (W~(s)(~)(g) = / x  r s)r db. 

If det(/3) r 0, Wz(s) has an entire analytic continuation, and by uniqueness, 

satisfies a functional equation 

(3.5) Wz(-s) o M(s, X) = 7(s, X,/3). W~(s) 

for some meromorphic function 7(s, X,/3)- Our normalization of M(s, X) will 

depend on an explicit computation of "/(s, X,/3), which is the analogue, in our 

situation, of the local factor of Shahidi [28], [4]. 

As we will see in a moment, the local factor "y(s, )C,/3) is closely related to 

the family of zeta integrals attached to a certain prehomogeneous vector space. 

Let Y = {x E X I det(x) • 0}, so that the triple (GL(n, E),  X, Y) forms a 

prehomogeneous vector space, as in Igusa [8]. An element g E GL(n, E) acts on 

x E X via x ~ gxt~, and this action divides Y into two orbits: Y = YII_IY2, 
where we may take Y1 = {x e X ] det(x) C NE(EX)},  and Y2 = Y ~ ]I1 [10]. 

There is a GL(n, E)-invariant measure on Y given by 

dx 
(3.6) d• - 

[ det(x)I~" 

For a unitary character T of F • and for r E S(X), we can then define zeta 

integrals via 

(3.7) 

f o r j  = 1,2. 

/ .  
zj(8, r =  (x)lxl C(x) d• 

Similarly, we define Z(s, 7-, r by integrating over Y rather than 

These integrals converge for Re(s) >> 0 and have meromorphic analytic 
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continuations. There is an intermediate functional equation of the form 

2 

(3.8) Z(s, T, r = Z ej(s, v)Zj(n - s, T -1, r 
j = l  

where the ej(s, T) are meromorphic in s. (The complete functional equation 

relates Zi(s, T, r to Z j ( n - s ,  7 -1, r for j = 1, 2.) For any/3 E Yj, it is convenient 

to write e~ (s, r) in place of ej (s, r), although the factor depends only on the orbit 

of/3. In the appendix to the current section, these factors have been computed 

to be 

n--1 

(3.9) ez(s, T) = ~/E(~b o N E) ("-21)" eE/F(/3) '~-1 1-I pF(S + r -- (n -- 1), T. e~E/F)" 
r----0 

Here ~E is the Well index (an eighth root of unity) of the indicated character 

of second degree of E +, and pF(S, T) is the "y-factor from the local functional 

equation for GL(1, F) in Tate's thesis. In brief, if we define @(s, v) to be the 

zeta function of F given by 

1 if r is unramified, 

(3.10) @(s, r) = 1 if T is ramified, 

then 

(3.11) pF(S, T) = IF(S, T) �9 (exponential factors). 
@(1 - s, T -I) 

For more detail, see the appendix to this section. Now we solve for ~/(s, X,/3). 

PROPOSITION 3.1: For any /3 E X with det(/3) r 0, the factors e~(s, X) and 

~(s, X,/3) from the respective functional equations of Z(s, X) and W~(s) are 

related by 

e~(2s, X) = x(/3)l/3l~ 7(s, X,/3). 

Note that (s, X) need not be normalized here, and also that both sides depend 

only on X JFX. 

Proof'. Given 13 E X with det(/3) r O, choose ~ E $(X)  satisfying qb(/3) r O, 

and define a section ~ ( s )  E I(s, X) by requiring that supp(r C P w n N  and 

(3.12) = for b e x .  
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j=l 

p 
(W~(s)r = ./y r s)~(tr(b~)) db 

= / x  ~(b)r db = ~(Z). 

Let ~2(-s) = M(s, X.)~ E I ( - s ,  ~). Then by (3.5) and (3.13), 

(3.14) (W~(-s)q)(e) = 7(s, X,/3)~3(/~). 

By the definition of W~(-s),  for Re(s) << 0 we also have 

(3.15) (W~(-s)~2)(e) = I x  k~(wnn(b), -s)r db, 

while for Re(s) >> 0, 

(3.16) ~(w,~n(b), - s )  = I x  r s) dx. 

But for x ~ Y, 

(: (o ) (3.17) w,~n(x)wn = = - 1 wnn(_x_l)  
- x  

==~ wnn(x)w,~n(b) = 0 - x  

We use the notation Cb(Y) = r + y) for any r C S(X) and b E X. Then for 

Re(s) >> 0, 

�9 (wnn(b),-s) = ./y X(-x-1)]  - x-1]E+~ qa(b - x -1) dx 

(3.18) = ./v X(-x-1)]  - x-1]~E~b(--x-1)dXx 

= ./y X(X)]X]~E~b(X) dXx 

= Z ( 2 s ,  x ,  

(note that []E = []~), this final equation holding now for almost all s by the 

continuation of Z(2s). So for Re(s) << 0 we have 

(3.19) (W~(-s)k~)(e) =/~c Z(2s, )G ~b)r db 

2 
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where ~j is the integral 

(3.20) Zj = i x  Zj(n - 2s, X -1, (-~-b-b))r 

Now let B = {b E X I bii E Of  and bij E OE for all i < j}. For r E Z and some 

choice of generator ;r of PF, set B,  = 7r -~ �9 B, so that X = LJ~__0 B,.  Then for 

Re(s) << 0, 

(3.21) 

~ = ~--+o~lim ,..f f.~ x(x)-'Ixl~-2"(~)(x)dXx r 

= l i m  f X(x)-llxlv2S~(x) [is r dx 
r---* oo j yj  

since (~b)(X) : r  and both integrals are over compact sets. But 

(3.22) ; ~  r - x))) db : r -/3), 
r 

where r is the characteristic function of B,. There is some constant c E Z 

such that  supp(r C B~_~, and we note that {B~_,},~__0 gives a system of 

compact open neighborhoods of 0 in X. Since ~(, [IF, and ~ are locally constant, 

there are two cases: 

(1) If/3 E Yj (an open subset of X), then for r large enough, 

i,.. ~(~)-'l~l;~'+(x)D'(x- /3)dx = L+~<-: x(x)-'lxi;~'+(x)D.(x- /3)dx 

= x(9) -~1zl7~2~(/3) f D.(x -/3) dx 
+B~-,. 

(3.23) 
P 

= X(/3)-II/3IE~b(/3) .Ix. ebb(x) dx 

= x(/3)-~1/3177~(/3),~,.(o) 
= x(/7)-II/31E~(D'). 

(2) If, on the other hand,/7 ~ Yj, then the integral is clearly 0. 

So 27j equals either 0 or X(/3)-11/3]ES~(/3), and we have 

(3.24) ( W z ( - s ) q 2 ) ( e )  = e~(2s, X)X(/3)-ll/31Es~(~), 
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which, combined with equation (3.14), yields 

(3.25) 7(s, ;~,/3) = ~(/3)-l]/3[Ese~(2S, ;~). 

Isr. J. Math. 

Notice that 7(s, :~, [3) depends on/3 in a fairly trivial way. In order to separate 

out the behavior of the zeros and poles of 7(s, X,/3), we will write 

(3.26) x) = x, I . ) .  

Now we can perform a fairly detailed analysis of the intertwining operator 

M(s, X). Let 

n--1 

(3.27) a(s, X) = H CF(2s + j -- (n -- 1), X" eJE/F), 
j=0  

which is just  the numerator of 7(s, X) when it is written as a quotient of products 

of zeta functions (see equation (3.9) and Proposition 3.1 above). We normalize 

M(s, ~() by setting 

1 
(3.28) M*(s, X) = a(s, X) " M(s, ~(). 

PROPOSITION 3.2: The normalized intertwining operator M*(s, X) is entire, and 

for any given value of s c C, there exists a holomorphic section q)(s) E I(s, X) 
such that M*(s,x)O(s) is non-zero. _b-brthermore, if (s,x) is normalized, and 

(s, X) q~ R, where 

R = {(s,x) E C x E x [ " /(s ,x)3,(-s ,~)  = 0, or X = ~ and s = 0}, 

then M*(s, X) is an injective operator, as is M*(-s ,  ~), by symmetry. 

Proof." The first step in the proof that M*(s, X) is entire is a standard check 

(as in [24]) that the analytic properties (i.e., degrees of poles and zeros) of the 

family of sections 

(3.29) M(s,x)r  

(as ##(s) ranges over all holomorphic sections of I(s, X)) coincide with those of 

the family of functions 

(3.30) M(s, X)r s) 
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(as ~ ranges over S(X)). This fact is sometimes referred to as Rallis's Lemma 

[29]. See the proof of Proposition 3.1 for the definition of (I)~. Next, setting b -- 0 

in equation (3.18) of that  proof yields 

(3.31) M(s, X)r s) = Z(2s, X, ~). 

Note that,  in fact, the right-hand term above depends only on X restricted to F x 

as does a(s, X). So the first two assertions of Proposition 3.2 reduce to analogous 

assertions about the functions 

1 
(3.32) a(s,x-~" Z(2s, x,~). 

Since a(s, X) is also the common numerator of the factors ej (2s,)~) occurring 

in the functional equation of Z(2s, )6 ~), the proof from this point on follows 

that  of the theorem on p. 106 of [24]. This concludes the proofs of the first two 

assertions. 

Now, given that  M*(s, X) is entire, the operator 

(3.33) M*(-s,~) o M*(s,x):  I(s,x) > I(s,x) 

is well-defined, and, since we are assuming that  (s, X) ~ R, the operator must in 

fact be a scalar, by Proposition 2.2. By using the functional equation (3.5) of 

Wz(s) twice, we have 

~(8, x, ~) .~(-8, ~, ~) . w~(s). (3.34) Wf3(s)oM*(-s,~)oM*(s,x)= a(s,X) a(-s,~) 

If we apply this to a section of the form (I)~(s), noting that  (W~(s)(~)(e) = ~(/~) 
can be chosen to be non-zero, we can conclude that 

"v(s,x,13) 7(-s,~,~3) #0. 
(3.35) M*(-s,:~)oM*(s,x)= a(s,x) a(-s,~) 

This proves the injectivity of M* (s, X)- | 

We can now state the theorem giving the possible points of reducibility of 

I(s,x). 
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THEOREM 3.3: Suppose that (s,)/) is normalized, and let 

A 

R = {(s, x) �9 C • E• I ~(s, X)~( - s ,  ~) = 0, or X = )~ and s -- 0}. 

I f  (s,)/) ~ R, then I(s, X) is irreducible. 

Proof'. Suppose that  (s, X) ~ R, and that A C I(s, X) is a proper irreducible 

submodule. Then we have an exact sequence 

(3.36) 0 

with A and B non-zero. 

I ( - s ,  )/-1), we obtain 

(3.37) 

, A * , I ( s , )/ ) ---~ B -----. O 

Taking contragredients, and noting that  I(s, )/) ~- 

o - - - ,  .~ , Z ( - s , ) / - ~ )  - %  ~ m ,  o. 

Now let/5 �9 GLF(E 2~) be given by 

(3.38) (x, y)6 = (~, -~)  for (x, y) �9 E ~ @ E ~ = E 2n, 

and note that  conjugation by 3 preserves G. If the action of G on A is given by 

;r, let ;r * be defined by zr*(g) = zr(6-1g/5), and denote this new representation by 

A *. By Theorem II.1, p. 91 of [23], since A is irreducible and admissible, .4 -~ A *. 

Also notice that  I(s, X) ~ ~ I(s, ~-1) via ff~ H ~ ,  where ~ ( g )  = ~(8-198). This 

(a b) relative to the follows from the fact that, if we represent g E G as g = c d 
\ / 

E 2n = E n G  E n, then 6 - lg8 = ( a  - ~ .  Hence complete polarization w e  may 
\ 

define a mapping 

(3.39) 

via 

T e H~m(I( -s ,  X- ') ,  I(s, ~-1)) 

(3.40) I ( - s ,  )/-1) ~, ~ ~ A ~ ~_~ I(s,)/)* ~ I(s, )~-1). 

Clearly ker(T) = /3 ,  and 0 r B c I ( - s ,  )~-1). 
Now (s, X) ~ R implies that ( - s ,  X -1) ~ R (as R only depends on XIF• ), and 

so M * ( - s ,  )/-1) is injective by the preceding Proposition. Since T is non-zero 

and non-injective, the dimension of Homa( I ( - s ,  x- l ) ,  I(s, )~-1)) must be at least 

2, and so it follows that  ) / =  )~ and s C { 0 , - � 8 9  l~n} by Proposition 2.2. 
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Next ,  we repea t  the a rgument  using a non-zero irreducible submodule  C C 

ke rT .  This  yields an opera tor  T ~ E Homv(I(s ,  X), I ( - s ,  ~)) which is again non- 

zero and non-injective. Hence T' is not a mult iple of M*(s, X), so t ha t  the 

dimension of the given H o m  space is at  least 2, and again we conclude t ha t  

X = )C and s E { 0 , � 8 9  n-1 , 2 }" But  now we have shown tha t  (s, X) = (0, ;~), 

which contradicts  (s, X) ~ R. II 

For convenience, we list the pairs (s, X) E R in a more e lementary  form. First ,  

note the following. 

LEMMA 3.4: Suppose that X is normalized. Then either 

(1) X = X, in which c a s e  ) ~ [ F  x = 1 o r  X I F  • : eE/F, or 

(2) X ~ X, in which ease both X[F• and (XIF• ) " eE/F are ramified characters 

o f f  • . 

Proof: The  first assert ion is trivial,  so suppose tha t  X ~ 9~. Firs t  assume 

tha t  E l F  is an unramified extension. Then  1 and eE/F are the only unramified 

quadrat ic  characters  of F x. I t  is easy to see tha t  if X[F• were unramified,  it 

would also be quadra t ic  due to the normal izat ion of X, and so it would have to 

equal one of 1 or eE/F. Since this is not the case, X[F• must  be ramified. The  

same reasoning shows tha t  (X[F• is also ramified. Suppose next  t ha t  E / F  

is ramified. In  this si tuation,  if XIF• were unramified,  it would be trivial ,  since 

7rF = Nff(TrE) generates  PF. Hence X[F• must  be ramified, and similarly for 

(xIF• ~E/F- I 

LEMMA 3.5: Suppose that X is normalized. I f  X = f(, then let XIF• = e'~/F, 

where m = 0 or 1. 

(1) Suppose that E l F  is an unramified extension, and that X = X. Then 

7(s, X) = 0 when 

s e ~ - 1og(qE---'~ " (m + 2Z) for 1 < k < , 

or when 

n + l  k +  l r i - ( m + l + 2 Z )  [ o r l < k <  [2 ] 
s e - - ~  - 1og(qE-------~ 

(2) Suppose that E / F  is ramified, and X = X. I f  m = O, then 7(s,  X) = 0 when 

s E ~ - log(qE------~ " Z /'or 1 < k < 
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H m  = 1, then "Y(s,x) = 0 when 

n + l  k + - - . Z  f o r l  < k < . 
s e - ' - 7  - 1og(qE) 

(3) I f  X # ~, then "y(s, X) has no zeros. 

This is an easy computation using equation (3.9), Proposition 3.1, and Lemma 

3.4. 

The list of possible points of reducibility is much simplified by assuming that  

(s, X) is normalized. As noted after Theorem 1.1, this has the slight disadvantage 

that one cannot fix )C and consider when reducibility occurs as XI I~ varies over 

all quasi-characters in the equivalence class of X. 

THEOREM 3.6: Let (s, X) be normalized. 

(1) I f •  • ~, then I(s, X) is irreducible for all s. 

(2) I f  xIf• = 1, then I(s, X) is irreducible except possibly when 

8 = 0  or 

( n + 2  k )  for some k satisfying l < k < [ ~ - ~ ] .  s = +  2 

(3) I f  XIFX = eE/F, then I(s, X) is irreducible except possibly when 

S ~ 0 or  

s = + k for some k satisfying 1 < k < . 

A p p e n d i x  t o  S e c t i o n  3 

Here we will solve for the factors e~(s, T) in the intermediate functional equation 

(3.8). The computation is along the same lines as that  in [31]. Let all notation 

be as given earlier. For brevity, we write N and T for the relative norm and 

trace, respectively, of the extension E / F .  

First, recall that for ~ E $(F)  and for any character T of F • Tate's zeta 

function is given by 

(3a.1) ~(~' TI I~F) = IF• ~(X)T(X)IXlSF dXx" 

It satisfies a functional equation 

(3a.2) (~(r "rl I~) : pF(TI I,~)" r r--ll  ]~--'), 
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where ~ (depending on the choice of r was defined earlier. As in [33], pF(r I [~) 

is easily computed to be 

pF(TI I,~) = 

(3a.3) [q/�89 E T(erFn_f)~2(e~rTD_I) q(D+t)(8--�89 ~F(S,V) 
eeblF/(1.t.7~t ) ~ F ( 1  --  8, T - - l )  ' 

where P~ is the conductor of v, and D is maximal so that r = 1 on PF D. Also, 

PfE is the conductor of the character T o N of E X , so that v o N = 1 on 1 + P f .  

Note that PF depends on the choice of r and that the term in brackets [] above 

is a Gauss sum having absolute value 1. 

The computation of ep(s, "r) begins with the following: 

LEMMA 3A.l:  For/~ E Y and Re(s) >> 0, we have 

e (s, = T(f )l l  fC T(x)lxl (p(tr(x )) dXx, 

where C is a sutticiently large compact open subset of X. 

Proo~ If L C GL(n, E) is the kernel of the natural map 

GL(n, OE) ~ gL(n, OE/Pf  ), 

then L is a compact open subgroup of GL(n, OE) and det(g) E ker(T o N) for all 

g E L. Let ~ be the characteristic function of the orbit L M of f~ under L, and 

set r = ~ ,  so that r = ~'~(-x). We then apply the functional equation (3.8) 

to r The right-hand side yields 

(3a.4) (RHS) = e (s, [ r(x)-llxl  dx 
JL [81 

= e (s, 

where m+(L[fl]) is the additive measure of L[13] C X. On the other hand, letting 

C D - supp (~ )  be a compact open subset of X which is stable under L (this is 

easily chosen), 

= J(i[~] fC T(X)lxl'r x dy. 
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Normalizing Haar measure dg on L so that f i  dg -- 1, the above equals 

= m+ (L[/3])]c r(x)]xl:5(tr(x/~))dXx. 

Equating the two sides gives the result. | 

The next lemma permits ez to be computed by induction on n. We will write 

e~(s, T) = e~(s, 7-) and X -- X '~ to make the dependence on n apparent. 

LEMMA 3A.2: Fix a GL(n, E) orbit of Y ,  and choose a representative ~ of that 

orbit of the form ~ = ( ~' ~2 ) , where fll E diag(n - i , F  • and f12 E F • . Then 

for n >_ 2, 

e ~ ( s , r ) = Z ( n  1,s, j31,~32) n-1 - .ezx ( s -  1 , r ) ,  

where 

Z(n - 1, s, t31, ~2) = r(t32)[j32[~[/31[F/~ r(c)[c[sF+n-2(b(tr(Bc t/3~31) + cj32) dB dc, 

and the integration takes place over the set 

A - -  {(B,c) E E n-1 x F [ Bct[~ E C1, Bc E C2, and c E C3} 

for suflJciently large additively-closed compact open sets Ci in the appropriate 

spaces. Here, B is a column matrix, and the measures are as described below. 

Proof'. First, note that  the self-dual measure on X with respect to the character 

r is given by 

(3a.7)  = l - I d x , ,  �9 l - I  
\ i = 1  / l<_i<j<n 

where dxi~ is the self-dual measure on F with respect to r  and for i < j ,  dxij 

is the measure on E which is self-dual with respect to the Fourier transform on 

S ( E )  defined by the character CoT.  This follows from the fact that  for x, y E X,  
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for U E X n- l ,  V E M(n  - 1, 1, E), and c E X 1 = F, then we have 

(3a.10) dx = dU . dV . dc, 

where dU and dc are the usual measures on X n-1 and X 1, respectively, and 
n--1 dV = l-L=1 dV~, for dVi the measure on E defined above. As in [24] and [31], 

there is a homeomorphism 

(3a.ll) X n-1 • M ( n -  1,1, E) • F • ~ {x e X n I x~n # 0} 

given by 

(3a.12) ( d , B , c ) ,  , 0 1 0 t/~ = t/~ �9 

From the Lemma 3A.1, 

(3a.13) 

e~(s , r )=~-(~) i~ i~ fc  v ( U V )  ( v t ? v ) 8 g n r  V) (~01 0fh) c ~ ))dUdVdc. 

After making the change of variables U = A + Bc t~,  V = Bc, this yields 

(3a.14) e~(s, 7) = 

/ T(A)T(C)[A]~ ~ Icl~-~r + Bc t[1~1) + c/32)Ic[2F~-2dA dB dc, 

where we choose sets Ci so that (schematically) we may write 

(3a.15) C =  td2 C3 ' 

and the integral is over the set 

(3a.16) { (A ,B ,c )  I A + B c t B ~ r  a n d e e C a } .  

Integrating with respect to A first, we have 

= [ r(c)lcl~F+'~-2r + cf~2) • (3a.17) e~(8, T) 
JB cEC2 ,cECa 

[fA+Bct/}eC~ r(A)'A'SF-l~(tr(Aj31)) d• A] dB dc. 
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By the same argument used in Proposition 4.2 of [31], the integral in brackets 

above equals 

S V(~l)-l[131[lF-s'en-l(s 1,~1) i fBc t /~CC1,  
(3a.18) 

L 0 otherwise. 

Collecting terms gives the required result. �9 

To complete the induction, we still must simplify the integral 

Z(n - 1, s, i l l ,  f12). First of all, we may choose the sets Ci carefully so that 

(3a.19) 

, 4 = { ( B , c )  C E  n-1 x F I C E P F  N , a n d c N ( B ~ ) E p E  M for l < i < n - - 1 }  

for any M and N satisfying 2N _< M << 0. If ~1 = diag(~3~l), -. .  , f ~ - l ) ) ,  then 

n- -1  

tr(Bc tB~31) = y ~  c~ ' )N(B, ) ,  
i = 1  

(3a.20) 

and we have 

(3a.21) V 8 ~'(n --1, s, /~1, /32) = (~2)[~2[F[~l[F• 

The integral in brackets may then be written in terms of the Well index: 

LEMMA 3A.3: Let XA stand for the characteristic function of any set A. Then 

f o r M  << 0, 

(*) /E  XP~ (xN(b) ) r  (b) ) db = 7E(fx)ix]F 1 

for any x E F • , where fx: E + --* T / s  the character of second degree given by 

f~(y) = r  and 7E(f~) is the Weil index of fx (see [34], [31], or [27]). The 

measure db on E is chosen (as above) to be self-dual with respect to r o T. 

Proof." Fix x E F • and choose L E Z so that xN(b) E .pM if and only 

if ord(b) > L (ord standing for the order mod ~OE). Then L = L(M, x) is 

the smallest integer which is greater than or equal to M - o r d ( x )  Suppose that  
2 

7 : ) - 0  - D - 1  r o T = 1 on E , but not on PE , and define A = PE (L+o+~ It is 

easy to see that 

L { m ( A )  i f b E P  L, 
(3a.22) r )dy = 0 otherwise. 
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Hence the integral ( . )  in the statement of the lemma can be written as 

(3a.23) ( . ) = / E X P ~ ( b ) r  m ( A ) - I  /E  ~A r247  T(b~)])dydb. 

If M < - D  - 1, then ord(xN(y)) > - D  for all y E A, and we can "complete the 

square": 

(3a.24) (*) = m(A)-I /E/E X A ( - y ) r  § y) ) dydb 

XA (b -- y) f~(y) dy db. 

We are now essentially done by .Corollary 2 to Theorem 2 of Weil [34], save that  

we must compute the modulus of the symmetric morphism Px: E --+/~ associated 

to fx. Since 

(3a.25) fx(a § b) f~('a)-lf~(b) -1 -- r  + b) - N(a) - N(b)]) = r ), 

p~ takes b E E to the mapping a ~-+ ~b(xT(ab)). But in our definition of the 

Fourier transform on E, we have already chosen an isomorphism E -~ /~ via 

b ~-+ Cb, where ~bb(C) = r  and the measure o n /~  which is dual to our 

fixed measure on E is exactly the measure on /~  which is inherited from E via 

this isomorphism. Hence the modulus of p~ equals [XlE ---- IXl2F. So finally by 

Weil's result cited above, 

1 lIE (3a.26) (*) = 7E(f . ) lp~l -~m(A)  - XA(X) dx = "~E(f~)IXlF 1, 

as claimed. | 

Next, note that  by choosing a basis for E / F ,  the Weil index of f~ can be 

related to the "standard" Weil indices on F, as in Rao [27]. This allows the 

following simplification: 

LEMMA 3A.4: With f~ as above, and eE/F the unique non-trivial character of 

F • which is trivial on N(E•  we have 

=  E/F(x) "  E(fl) = " o N )  

for all x E F • 

Proob Choose b E F such that  E = F(v~) .  If c E E is written as c = a + t3v/-b 

for a, t3 E F,  then 

(3a.27) f~(e) = r  2 - b~2)) = r162 
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Using Rao's notation [27], in which xr  stands for the character of second degree 

on F defined by xr  -- r we see that 

(3a.28) f~ = (xr x ( -bxr  

with respect to the isomorphism E ~- F • F chosen above. Hence 

(3a.29) "/E(f ~ ) = 7F(X~b)- ~/F(--bxr ), 

since Weil indices respect direct products [34]. Again, in Rao's notation, 

(3a.30) 7E(f~) _ 7F(X, r - b e )  = ~/F(X, r --b)F 
~E(L) 

= (x, b)g = eE/F(X) 

by the appendix of Rao [27] (also summarized in [30]). Here, ( , )F  is the Hilbert 

symbol of F.  | 

Applying these last two lemmas to equation (3a.21), we obtain 

LEMMA 3A.5: 

Z(n 1, 8,/~1,/~2) ~E(~ N n-1 e n-1 8 T n-1 - = o ) e~/F(Zl) ~/F(Z2) pF( , -eE/~). 

Proof." 
(3a.31) 

l : ( n  - 1 ,  ~, ~ ,  ~ )  

=T(~2)I/321~FI~lJF 
n--1 ] 

=TE(~ o N)  n-1 f r(ci32)[cj32[~F~b(cj32) eE/F(C n-1 det(/31)) dXc 
Jp 

=TE(~ Y ~ n - l e  I~ ~e in ~,~-l j "  (T , - 1  s - o �9 e E : / v ) ( x ) l z l ~ , r  d •  ) ElF,/J1) E/F~2] __~' 

Now, applying the functional equation (3a.2) to ~o(x) = r �9 X ~ ,  it is easy to 

see that  {(~,w) = 1 for any quasi-character w (if N << 0 is small enough), so 

that  the result follows. | 

An easy induction on n gives the final result: 

PROPOSITION 3A.6: For any ~ E Y, and any character r o f F  x , we have 
n - - 1  

e~(s, T) ~- 7E(~ o N)  ~ eE/F(Z) n-1 n pF(S + r -- (n -- 1), T . erE~F). 
r---~0 
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4. S u b m o d u l e s  

Now suppose that  (So, X) is a possible point of reducibility of I (s ,  X) as given 

by Theorem 3.6. In this section, we will use the Weil representation to produce 

proper G-submodules for most of these points. Since X = )~, write XIF• = en~/F 

for any integer m > 0 of the correct parity. Notice that  if so ~ 0, then so E Z 

if and only if m and n have the same parity; otherwise so E (1 + Z). So we let 

so - m~n, and note that  this accounts for all possible points of reducibility, save 

when so = 0 and the parity of m is different from that  of n. In this last case, we 

will prove, in a later section, that  I(0,  X) is irreducible. 

For each m > 1, let V, ( , )  be a non-degenerate Hermitian vector space over 

E with dimE(V) -- m. For a given m, there are exactly two such spaces (up to 

isometry), distinguished by the two possibilities for det((vi, vj)) E F•215 
V m where { i}~=1 is some choice of an E-basis for V. Let W = E 2" be the space of 

row vectors with skew-Hermitian form given by (u, v I = uJ t~, so that  G = U(W) 

is the isometry group of W. Then we can construct a non-degenerate skew- 

symmetric F-linear form (a symplectic form) on the F-vector space W -- V |  

via 

(4.1) <<, >>= T[(( , )  | (,)), 

and, in the usual way, this gives a dual reductive pair 

(4.2) U(V) • G ~ Sp(W).  

If H: Sp(W) --~ Sp(W) is the metaplectic extension cover of Sp(W),  then ([15]) 

gives an explicit splitting of the extension H - I ( G )  of G. This depends on the 

,,~ . F x E x choice of a character extending r - - 4  T to , and we choose the character 

X in our situation. When the Weil representation f~r of Sp(W),  associated to r is 

realized on the space S(Vn),  as is usual when restricting to dual pairs, and when 

we compose ~ with the splitting just mentioned, we obtain a representation 

w = we of U(V) • G in the space S(Vn).  

LEMMA 4.1: The representation w described above is given by the following 

formulas. 

(1) For G = U(n, n), if  ~ E S(Vn),  a E GL(n, E),  b = t~ E M(n, E), and w~ is 
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and 

as in the proof of Lemma 2.1, then 

w(m(a))~(x) = x(det(a)) [  de t ( a ) [~  ~o(x. a), 

w(n(b) )~(x) = r  x)b) ) ~(x), 

f 

w(w,)~(x)  = "y-~ J w  r o t r (x" ,  z) ) ~(x' + z) dz. 

The representation w is defined on all of G by the Bruhat decomposition: 

if  g = plw~p2 for pl, P2 E P, then w(g) is defined by 

= 

The notation is as follows: For 1 <_ r <_ n, write V n = V "~-~ @ V ~ and  

x = x ' + x "  to indicate tha t  x '  E V n-*,  and x" E V ~. The measure  

dz on V ~ is chosen to be the product of the H a a r  measures  on V which 

are self-dual with respect  to the Fourier  t ransform defined by the pa i r ing  

r o TEE(, ): V x V ~ T. "y is a certain 8 th root of unity depending on V 

and X which is given explicitly in [15]. 

(2) For U(V), w is given by w(h)~(z)  = ~ (h - ' x ) ,  where x e V "~, and 

h - i x  = h - l ( x l , . . . , x , ~ )  = ( h - I x 1 , . . . , h - l x ~ ) .  

A parallel  const ruct ion for a symplect ic-or thogonal  dual  pair  is given in [30], 

for example ,  or in m a n y  other  sources. 

For any charac ter  X restr ict ing to er~/F , and any choice of V as above,  we have 

a G-inter twining m a p  

(4.3) S ( V  ~) , I(so, X) 

given by 

(4.4) ~ ~ {g ~-~ w(g)~o(0)}. 

Denote  the image of this m a p  by R~(V, X). Rallis 's  Theo rem on coinvariants  [25] 

is extended to the uni ta ry  case in [23], so t ha t  

(4.5) R~(V, X) ~- S(Y~)u(v) ,  

where S(Vn)u(v)  is the max ima l  quotient  of S ( V  n) on which U(V) acts  trivially. 

The  analogue of Proposi t ion  3.1 of [19] holds: 



Vol. 98, 1 9 9 7  DEGENERATE PRINCIPAL SERIES FOR U(n, n) 281 

PROPOSITION 4.2: Assume that 1 _< m = dimE(V) < n, so that So ~_ O. Then 

Rn(V, X) is an irreducible and unitarizable G-module, and the restriction of this 

representation to P is also irreducible. 

The proof follows that  of [19] closely. In the next proposition, we begin to 

gather together the facts about the constituents at the points of reducibility. 

One definition is needed first. As in [27] and [15], we define a map 

(4.6) x: G ~ E x / N ( E  • 

via the relative Bruhat decomposition of G with respect to P. For example, on 

the open cell 

(4.7) x(nlm(al )wnn2m(a2)  ) = det(al) det(a2) mod N ( E  x ) 

for any nl ,n2  C N,  and al,a2 E GL(n,E) .  For the definition of x on the other 

cells, we refer the reader to [15]. 

PROPOSITION 4.3: 

(1) Suppose that 1 ~ m < n and X [ F  x ~--- e~/F, SO that So = ~ _~ 0. Let V1 

and V2 be inequivalent m-dimensional Hermitian spaces over E. Then the 

spaces R~ ( V1, X) and R~(V2, X) are inequivalent, irreducible G-submodules 

o f / ( so ,  X). In fact, we have 

Rn(VI, x) �9 Rn(V2, x) c 1(so, x), 

and these are the unique irreducible G-submodules. In the case so -: O, we 

have equality: 

Rn(Vl, ~) �9 Rn(V2, ~) = ~(So, z).  

(2) I f  so = - 9 ,  suppose that X[v• -- 1, and define Xc: G -* T by xc (g )  -- 

X(x(g)). Then Xc is a character of G extending X o det on M,  and i f  we 

define 

R~(O, x) = C .  xG, 

then R~(0, X) is the unique irreducible G-submodule of / ( so ,  X). (Notice 

that i f  so = - 9  and Xlvx = eE/F, then/(So,  X) is irreducible by Theorem 

3.6. In this case, XG is not a character.) 
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(3) I f  V is a Hermitian space with dimE(V) = m > 2n, or if m = 2n and V is 

split, then 

z( 0, = R (V, x).  

In discussing the proof of this result, we summarize the details of the analogous 

work in [19]. As before, let X = {x �9 M(n,  E) [ x = t~}, and for a Hermitian 

space {V, ( , )} ,  define the moment map 

(4.8) #: V ~ ) X 

by 

(4.9) #(x) = ( (x i ,x j ) ) ,  where x -- (Xl , . . .  ,xn) �9 V n. 

For any ~ �9 X,  let CZ be the character o f N  ~_ X given by ~p~(n(b)) -- r 

We define a special subset of V'~: 

(4.10) Vr~g = {x �9 V ~ [the E-ranks o f x  and #(x) equal min{m,n}}.  

Here, the E-rank of x is the dimension of the E-subspace of V spanned by the 

components of x, while the rank of/~(x) is its rank as a matrix in M(n,  E). By 

a basic calculation ([1], [25], [23]), we have: 

LEMMA 4.4: Let/~ E X. 

(1) The twisted Jacquet functor ~q(V n) - - *  8 ( V n  ) N,~p~ can be explicitly realized 

by the restriction map S ( V  n) ~ 8(#-1(~)) .  

(2) In particular, i f # - l ( ~ )  = 0, then S(Vn)N,r ---- 0. 

(3) I f  ~ e #(Vr~g), then #-I (B)  is a single U(V)-orbit, and the space 

P (V, (s(vn)N,c )v(v) 

is one-dimensionaL The map S(  V ~) --* Rn( V, )l) N,r is given by integration 

against a U(V)-invariant measure on #-1(~).  

Proof  of Proposition 4.3: (1) If V1, ( ,)1 and V2, ( , )2 are inequivalent non- 

degenerate Hermitian spaces of dimension m with m _< n, then we have two 

moment maps: 

(4.11) #~: V~ ---* X, r = 1, 2. 
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Choosing bases I~ (~) ~ (~) v(~ )} for each V~, let Q~ be the matrix of scalar t~l  '~2 ~ ' ' ' '  
((~ (~) ~ (~)~ 

products ~v~ ,vj jj~ for r --- 1 and 2, respectively. That the spaces Vr are 

inequivalent amounts exactly to saying that Q1 and Q2 are not equivalent un- 

der the usual GL(m, E) action on H(m, E). With the isomorphisms V~ __ 

M(m,n ,E)  induced by our choice of bases, we clearly have p~(x) = txQ~2 

for x E M(m, n, E), and it is not hard to show that 

~ 
and similarly for V2. But then the failure of Q1 and Q2 to be GL(m, E) equivalent 

means that in fact 

(4.13) ~l(V~ ~, tog)n ~2(v~ ~, ,~g) = 0. 

Using Lemma 4.4 above, we can then show that  Rn(V1, X) 7 ~ Rn(V2, X). Fix 

~ 1 : (  q l  00) , and consider the following. Applying the exact Jacquet functor 

( )Y,~l to the exact sequence 

(4.14) o -~  s ( y ~ ) ( u ( v 2 ) )  ~ s ( v ; )  -~  n . (v~ ,  x) -~ 0, 

yields another exact sequence 

(4.15) 0 --* $(V~)(U(V2))N,~,I --~ $(V~)N,~I ~ Rn(V2, X)N,r --~ 0. 

But now #~1(~1) = 0 by our observation above, and so by the lemma, 

(4.16) Rn(V2, X)N,r = 0. 

On the other hand, ~1 e ttl(Vl~reg) implies that Rn(V1, X)N,~p~ 1 is one- 

dimensional. Hence the spaces Rn(V~, X) cannot be isomorphic as G-modules, 

and the first part of (1) follows by Propositions 2.3 and 4.2. The statement about 

I(0, X) is due to the fact that I(0, X) is completely reducible, taken together with 

Proposition 2.3. 

(2) By Proposition 2.3 again, the main point which must be checked is that  

XG is a character. But this follows from the fact that  for any gl,g2 E G, the 

quotient 

(4.17) x(glg2) 
x(91)x(g2) 
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actually lies in F x , although the factors are in E x ([15]). 

(3) Suppose that  m _ n, and define 

(4.18) Vsnb = {X E Y n t the E-rank of x is n}. 

Exactly as in [19], under the assumption that the moment map 

(4.19) #: Vs'~b ~ X 

is surjective, the Weil orbital integral mapping [35] 

(4.20) s(ys --~ s ( x )  

p~--~M~ 

will be surjective also. For b E X, we will then have 

w(w~n(b) )~(O) = ~/-~ .Iv. r )~(x) dx 

= 7 -~ ./y r  dy (4.21) 

= ~-~M~(b) .  

So if our assumption on p holds, then the space 

J~ = (~ E I(so, )r I supp((I )) C Pw~N} 

will be spanned by R~(V, X), and since jn generates I(so, )t) as a G-module, we 

will have I(so, )r = R~ (V,)r But (4.20) is surjective if and only if V has isotropic 

subspaces of dimension n, and this only occurs if m > 2n, or if m = 2n and V is 

a split form (this is easily shown by actually constructing the two possible forms 

of dimension m). I 

5. Jacquet modules again 

If we choose the standard basis { e l , . . . ,  en, e l , . . . ,  e*} for W = E 2", and realize 

G C GL(2n, E), as before, we may define a maximal parabolic subgroup P1 C G 

to be the stabilizer of the subspace E .  e i. Then P1 = MIN1, where 

(5.1) 

M1 = 0 

7 

0) } 
~-1 E G I a E G L ( 1 ,  E) and ( ~  E U ( n - l , n - 1 )  , 

,._, ) n ( Ib, andc  
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For the remainder  of the paper ,  we will use a subscript  n to denote  objects  

re lat ing to G = Gn = U(n, n): for example,  In(S, X), Rn(V, X) and M*(s, X) are 

all G~-modules  or morphisms,  respectively. By comput ing  the Jacque t  module  

of In(s, X) with respect  to N1, we obta in  a relat ionship between In(  �9 , ~() and 

I ~ - 1 (  �9 , ~() which will be useful for inductive arguments .  

PROPOSITION 5.1: There is an exact sequence of M1 ~- GL(1,  E) • Gn-1 modules 

as follows: 

0 ~ s 1 7 4  --% I,~(s,x)ul ~ xl I=+@| ,X) ~0. 

This sequence splits when )~[ 1-8 r X[ [8. I f ( s ,  X) is normalized, this occurs when 

s r 0 or X ~ ~. Here fl is induced by restriction to M1, while a is described in 

the proof of Lemma 5.5 below. 

The  proof  follows tha t  in [19] closely. For later  use, we record the following 

l e m m a  concerning the various possible Hermi t i an  spaces of a given dimension. 

LEMMA 5.2: Let V be a non-degenerate Hermitian vector space over E with 

dimension m. Fix some element a E F x ~ NFE(EX). 

(1) / f r o  = 1, then there are two possibilities for the isometry class of V, given 

by Vi = E and (x, y>Q~ = xQ~fl, where Q1 = 1 and Q2 = a. Both of these 

are clearly anisotropic. 

(2) I f  m = 2, then the two possibilities are given by Vi = E 2 (row vectors), and 

(x, y)Q~ = xQ~ tfl, where 

Here, V1 is a hyperbolic plane, and V2 is anisotropic. 

(3) I f  m >_ 3, then V consists of the direct sum of  a certain number of hyperbolic 

planes with an anisotropic kernel which has dimension O, 1, or 2, and which 

appears above. In particular, when m >_ 3, each of the possibilities for V 

has a non-zero isotropie vector. 

Now we restr ict  the exact  sequence f rom Proposi t ion  5.1 to the Jacque t  module  
m - - n  

Rn(V, X)N1 at  the  special value so = 2 
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PROPOSITION 5.3: Suppose that XIF• = eE/F,m so - - 2  , and let V be a 

Hermitian space with dimension m. If  V is isotropic, let V' be the space derived 

from V by removing a hyperbolic plane. Then 

(1) As M1 ~- GL(1, E) x G~-I modules, the sequence 

o - ~  xl 1~-?  | _r~_~(so - �89 x) - ~  In(so, X)N1 

Xl I ? | In-l(so + �89 X) ---* 0 

is exact. 

(2) As M1 -~ GL(1, E) • Gn-1 modules, the sequence 

O---~XII~--~OR~_x(V',x)----~R~(V,X)N, ) ~ l l ? |  , 0  

is exact. When V is anisotropic, R~_I(V ~, X) is taken to be zero. 

(3) The natural maps between terms of the two sequences yield a commutative 

diagram: 

0 ~ I n _ l ( 8 0 - -  1,)(.) 4"4 In(SO, X)N, ~ [n_1(80"~" 1 ,X)  ~ 0 

i" T i T T 

o --, R n - l ( V ' , x )  --, R~(V,X)N, -~ R n - I ( V , x )  --* O. 

where i is the natural map, and i" is a non-zero multiple of the natural map, 

and, to save space, the character X[ [n--~ (resp. X[ I -~ ) has been omitted 

from the leftmost (resp. rightmost) terms. 

Again, the proof is as in [19]. Next, we use these last results to prove irre- 

ducibility at the remaining series of points on the unitary axis. 

PROPOSITION 5.4: Suppose that X[F X ---~ eEm/F , and that m and n have different 

parity. Then I(0, X) is irreducible. 

Note that this Proposition, together with Theorem 3.6 and the accumulated 

information on submodules of In(s0, X), completes the proof of Theorem 1.1. 

Proof'. Since I(0, X) is completely reducible and has no more than two irreducible 

submodules, by Proposition 2.3, it is easy to see that if I(0, X) were reducible, 

then it would be the direct sum of two irreducible submodules. Using the faith- 

fulness of the N1 Jacquet functor, one could then show that the exact sequence 

of Proposition 5.1 would split. But this does not happen in our situation, in fact, 

by the next lemma. | 
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LEMMA 5.5: / [ X [ F  x ---- s and m, n have different parity, then the sequence 

I n- l ( - -~ ,  X) 1 ~ 1 0 - - - '  xl I~ | > In(O, X)N~ ~ > xl I~ | I n - i (~ ,  X) "---' 0 

does not split. 

Proo~ It suffices to prove that  In(O, )()N1 does not transform by the charac- 

ter X[ 19 under the action of the copy of GL(1) in M1. For any @ E I,~(O,X)N1 

and t E GL(1) we write r(t) for the action of t on @. It is clear that  

~ ( r ( t ) 4  - x(t)ltl~4) = 0 ,  s o  that  r(t)4 - x(t)ltl~4 lies in ker~, and we may 

apply a - i  to it. We claim that  a-i(r(t)@ - )~(t)ltl~4) # 0 for some @, which 

will suffice to prove the lemma. 

As in [19], we consider the mapping used to define a -1 on ker~. Since ~ is 

given by restriction to M1, and G = PnPi [I PnWP1, where (o 1 ) 
l n - i  0 

w---- 0 ' 

0 l ~ - i  

(5.2) 

ker ~ is just the image in In(0, )/)Ni of the space of functions 

(5.3) T = {+ e IN(0, X) I supp(4) c PnwP1}. 

Then a - i  is defined on the image of T by the integral operator 

(A4)(g) --- f 4(wug) du, 
JN 

(5.4) 

where 

(5.5) N ~ = { m ( ~ l ~ - l ) n ( Y o ~  y E F } ,  

and g E M1. This converges if @ E T, since the integrand has compact support: 

consider the maps 

(5.6) Pi ~ P,~\PnwPi ~- PnWPi 

p ~'~ Pnwp, 

and where ~2 is the natural projection. Since N~ is homeomorphic to 7rl(N~), 

if we let f(u) ---- @(wu) for u E N~ and 4 6 T, then supp(f)  -- 7rl(supp(f)) -- 
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7r2 (supp (r N 7rl(N[). This last is the intersection of a compact set with a closed 

set, and hence f has compact support. 

If  the support  of a standard section ~ E In(s, X) is arbitrary, then the integral 

(5.4) (A(s)(~(s))(g) = f #2(wug, s) du, 
JN i 

converges for large Re(s). The integral operator A(s) has a meromorphic contin- 

uation to the whole s-plane. We will show in a moment that  A(s) has at most a 

simple pole at s --- 0, and we write 

A-1 A(s) = + Ao + O(s) 
8 

for its Laurent expansion at this point. Also, a simple computat ion shows that ,  

for gl C M1 and for Re(s) large, 

A(s) (r(t)O(s))(gl) = x(t)ItlE 8+-~ A(s)(O(s))(gl)- 

Choose a standard section O(s) E I,~(s, X) and gl E M1, so that  A(s)(O(s))(gl) 
has a non-zero residue at s = O, i.e., such that  A- l (O) (g l )  r O. Note that ,  for 

all s, the function r(t)O(s) - x(t)ltE +~ O(s) has support  in PnwP1, and thus 

A(s) (r(t)#P(s) - x(t)ltE +~ r  

is entire and its value at s --- 0 is simply 

A(r(t)O(O) - x ( t ) l t~(O)) (g l  ), 

On the other hand, for Re(s) large, 

A(s) (r(t)#2(s) - x(t)lt~ +~ O(s))(gl)  

=A(s) (r(t)O(s))(gl) - x(t) l t~ +~ A(s)(r 
n 

=x ( t ) l t l ~  (IriS" - I r iS:)A(s)(O(s))(gt) .  

Since the expression [t[~" -[tl~ has a simple zero at s = 0, while A(s)(O(s))(gl) 
has a simple pole there wth non-zero residue, we see that  

A(r(t)O(0) - x(t)[t~O(O))(gl) r 0, 
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and hence that  GL(1) does not act by the character t ~-* x(t)ltl~ in In(0, X)N1. 

I t  remains to show that  A(s) has a simple pole at s = 0. Defining i: G ~ - I  --* Gn 

via the isomorphism and inclusion GL(1) • Gn-1 ~- M1 C Gn, one then computes 

that  

(5.7) M -l(s - 1 X) ~ A(8) i* = o M (s, X). 

But in our current situation, Mn(s, )l) has a simple pole at s = 0: this is the pole 

which was removed by renormalizing via division by 

n - - 1  

J a(s, )r = H ~f(2s + j - (n - 1), X" s 
j=O 

Hence (Mn(s,)/)O)(e, s) has a simple pole at 0 for some O. But one also checks 

that  M~_l(s  - ! ,  X~ is holomorphic and injective at s -- 0 (see Proposit ion 3.2), 
2 / 

so that  A(s) has precisely a simple pole there. | 

m-~ with m > n and )dR• m I f  V1 and V2 P R O P O S I T I O N  5.6: Let So 2 --_ ~ eE/F. 
are inequivalent m-dimensional Hermitian vector spaces over E, then 

I~(so, X) = R~(V1, X) ~- R~(V2, X). 

The proof follows that  of Proposition 5.3 of [19], with the obvious 

modifications. 

If V is a Hermit ian space of dimension m with n < m _< 2n, then let V0 be 

the Hermitian space of dimension 2n - m such that  V G -Vo is the split space 

of dimension 2n. Here, -Vo denotes the space Vo with inner product equal to 

the negative of the original. The space Vo exists in all cases except when V is 

the non-split space of dimension 2n. When V is the split space of dimension 
(2n--m)--n and 2n, we take V0 = 0. Notice that  So = ~ implies that  -So = 2 , 

also that  m and 2n - m have the same parity, so that  R~(V, X) c In(so, X) and 

Rn(Vo, X) C I~(-so,  x) can be constructed with the same character X, in the 

case that  X[F• ---- erE/F �9 

NOW consider (I)1 �9 In(s, X) and (I)2 �9 I n ( - $ ,  )C). The function ~(g) -- (I)l(g) �9 

(I)2(g) satisfies ~(u(b)m(a)g) = lapqo(g), so that  ~ lies in a space of functions 

which carries a unique right G-invariant Haar  measure (see [1], p . l l ) .  In fact, 

this measure is realized by the formula ~ ~ f x  qz(wnn(b)) db, so that  we have a 

conjugate-linear pairing on I~(s, )/) x I ~ ( - $ ,  )/) defined by 

(5.s) = f db. 
J x  
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m-n XIF• m and we have a Her- Now suppose that  n < m < 2n, So 2 , 
- -  - -  - -  - ~  ~ E / F '  

mitian space V of dimension m with complementary space Vo. If  ~I) 1 E Rn(V~ X) 
is the image of ~ol E S(Vn),  and similarly for O2 E R~(Vo, ~) and ~o2 E $(Vo~), 

then for some non-zero constant c, 

(5.9) (~)1, ~ ) 2 ) ~  - C/X IV ~ /V~ r - (Y'Y)v~176 dxdydb" 

Letting W = V �9 (-Vo) as above, and writing ~o = ~01 | ~2 E $(W"), up to a 

constant, the above pairing equals 

(5.10) 

/x /w r /x /xr 
2 

= M~(O) = M~(O), 

where M~ is the Weil orbital integral map discussed in the proof of Proposition 

4.3. In fact, if the moment  mapping #: WinD "-* X is given as usual by #(x) = 

(x, x)w, then M~ is given by the integral formula 

(5.11) M~(y) = / ~(x)dvy(X), 

where, for each y E X, vy is a measure on the space t t - l (y ) .  Now, W~u b = 

{x E W n I rank(x) = n}, and so #-1(0) r 0 if and only if W has isotropic 

subspaces of dimension n, which is the case by our construction of W. So we may 

choose ~ so that  the pairing ((I)l, (I)2) is non-zero for (I)1 E R(V, X), 02 E R(Vo, X). 
Similarly, it is clear that  if U is another Hermitian space of dimension 2n - m 

which is not complementary to V, then R(V, X) is orthogonal to R(U, X). 
Now define R(Vo, X) to be the space of vectors V, where v E R(Vo, X), and with 

c~ E C acting via (c~, ~) ~ c~ �9 V, and g E G acting via (g, ~) ~ g . v .  It  is easily 

checked that  the pairing above defines a non-zero element of 

Homa(R(V,x),R(Vo, X) ) by setting v1(~2) = (Vl,V2) for vl E R(V,x) and 

v2 e R(Vo, X). 

Note that  the whole picture above works out perfectly well when V is the 

split space of dimension 2n, using V0 = 0, and defining R(0, :~) = C �9 ~(v as in 

Proposition 4.3. 
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PROPOSITION 5.7: I f V  is an m-dimensional Hermitian space with n < m < 2n 

which has a complementary space Vo, then 

H~m(R(V, X), R(Vo, X) ) ~ O. 

In fact, since R(Vo, )~) is unitarizable, we have R(Vo, X) ~- R(Vo, X), and so 

Hom(R(V, X), R(Vo, X)) r 0. 
G 

PROPOSITION 5.8: Suppose that n ~_ m < 2n, so that if V1 and V2 are the two 

inequivalent Hermitian spaces of dimension m, the complementary spaces Vl,o 

and V2,o both exist. Suppose also that ~([F• = e'~/F. Then for i = 1, 2, 

M*(so, x)(Rn(Yi, X)) = Rn(Yi,o, X) 

and so 

M*(so, ~()(~n(SO, X) ) : Rn(Vl,o, )~) 0 Sn(V2,o, •). 

I f  m = 2n and X[F• = 1, let V1 be the split form of dimension 2n. Then 

M*(so, X)(In(so, ~()) = M*(so, x)(R~(V1, X)) = Rn(0, X). 

Proo~ First suppose that n < m <_ 2n and let V be any Hermitian space of 

dimension m which has a complement V0. We are fixing )/with )ll~.• -- e'~/F, and 

so we omit mention of X for brevity. Since Rn(V)  is the image of S ( V  ~) under 

the mapping ~ ~-~ w(g)~(0), by Lemma 5A.1 of the appendix to this section, we 

have 

(5.12) 

But by Proposition 5.7, 

dimHom(R~(V), In ( - so) )  <_ 1. 
G 

(5.13) 1 _< dimH~m(Rn(V), R~(Vo)) < dimHom(R~(V), I , ( - S o ) )  < 1, 
- -  G 

so that  both dimensions are 1. Now suppose we can show that M*(so)Rn(V)  ~ O. 

Then M*(so) must be the unique fion-zero operator in HomG(Rn(V), In ( - so ) )  

and hence also in HomG(Rn(V) ,Rn(Vo)) .  By the irreducibility of R~(Vo), we 

could then conclude that M*(so)R~(V)  = Rn(Vo), as desired. 
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Hence it suffices to prove that M*(so)Rn(V) ~ 0 for each space V which has a 

complement. For the moment, suppose that n < m < 2n, so that each space V~ 

has a complement (i = 1, 2). By Proposition 5.6, since In(sO) is generated by the 

two spaces Rn(V i ) ,  and since M~(so) ~ O, we know that M*(so) is non-zero on 

one of the two subspaces. Without loss, we then suppose that M*(so)Rn(V1) = 
Rn (VI,0), and prove the corresponding identity for V2. 

First, suppose that X]F• = CE/F, SO that m is odd. In this case, fix an 

element a ~ F • ~ N(E • Choose a basis {Vl, . . . ,  Vm} for V1, and note that  the 

matrices Q1 -- ((vi, vj)~) and Q2 = (a(vi, vj)l) have determinants which differ 
m--1  2 

by a .  ( a ~ - )  . Hence when considered in F•215 det(Q1) ~ det(Q2). In 

other words, we may take V2 to have the same underlying space as V1, but with 

Hermitian form equal to a .  ( , )1. As in [19], one then checks that conjugation 

by (1 0) 
(5.14) ~-~ 0 a . ln  cCL(2n, E) 

induces an outer automorphism Ad(ra) of Gn which preserves the space In(so) 
and intertwines the subspace Rn (V1) with Rn (V2), and similarly for Rn (VI,o) and 

Rn(V2,o). We may also compute that for ~5 C In(SO), 

(5.15) M*(so)(Ad(wa))~b = x(an)lalnS~ 

Hence if �9 E Rn(V1) and M*(so)~b ~ O, then (I)a = Ad(ra)(I) ~ Rn(V2) and 

M*n(SO)~Pa ~ 0 also. It follows that M*(so)Rn(V2 ) = Rn(Y2,o) .  

On the other hand, if XIF• = 1, then for any s, 

(5.16) In(s, X) "~ Indpg0 (X) -~ XG | Indgo (1) 

as representations of K = G A GL(2n, OE), writing Po = P • K temporarily. We 

now claim that Is(s) is multiplicity-free as a K-module. By the above, this is 

true if and only if the algebra HomK(A, A) is commutative, where A = Ind~o (1). 

Now, there is an algebra isomorphism from the Hecke algebra ?-I(K//Po) to 

HomK(A,A) given by f ~ f*,  where f .  stands for convolution with f E 

7-l(K//Po). In order to prove that the Hecke algebra with convolution is commu- 

tative, it suffices (as in Rallis [26]) to find an anti-involution r of K satisfying 

T(k )  = plkp2 for some pl,P2 E Po depending on k E K. This is provided by 

modifying the proof in the appendix to w of [26], using the definition 

, 17, 
1 0 ) "  
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Hence In(s, )t) is multiplicity-free as a K-module  if )t]g• = 1. Next, let (9 be a 

K - t y p e  in In(s). Then,  when restricted to O, M*(s)]o = Co(s) �9 Ido ,  for some 

entire function Co(s). By the proof  of Proposi t ion 3.2, it is immediate  tha t  

Ce(s ) .  C e ( - s )  - "~(s, )r "~(-s, )~) for all 0 .  
a(s, X) a ( - s ,  X) 

But  now suppose tha t  n < rn < 2n, so tha t  0 < m ~ = 2 n - m  < n. Then  

so > 0 and ~(~,x) = 0 at  s = so, while it is non-zero at s = -So  (by Lemma 3.5). a(~,x) 
So Co(s) �9 C e ( - s )  has a simple zero at s = So. 

The proof  of the following result follows closely the proofs of Theorem 2.8 of 

[14] and Proposi t ion  4.4 of [17]. 

LEMMA 5.9: Suppose that X]F• = s and that V is a non-degenerate 

m-n Then set Hermitian vector space with dimE(V)  = m. Let so = 2 

d = d i m c  Hom ($(Vn),  1 | In(-so,  ~)), 
U ( V ) x U ( n , n )  

where the Weil representation acts on S ( V  n) as described in L e m m a  4.1. Let 1 

be the Wit t  index of V. The following inequalities hold: 

(1) i f m  < n, then d = O. 

(2) If  n <_ m < 2n, then d <_ 1. 
d - - 0  i f m = 2 n a n d V i s n o n - s p l i t ,  

(3) I f2n  < m, then d < 1 otherwise. 

Note: we actual ly prove tha t  d = 1 in all cases above in which this is allowed. 

By L e m m a  5.9, 

(5.18) dimHom(Rn(Vi,o) ,  In(sO)) = 0 (i = 1, 2), 
G 

which implies that ,  for any O E Rn(V/,o), Co(-So) = 0, so tha t  Ce(so) 7 ~ O. 

Hence M*(so) hits everything in Rn(Vl,o) G Rn(V2,o). Since we assumed tha t  

M*(so)Rn(V1) = Rn(VI,o), this implies tha t  in fact M~(so)Rn(V2) must  be non- 

zero, as desired. 

Next,  suppose tha t  m = n and m is even. Then  In(0) = Rn(V1) | Rn(V2). As 

above, we see tha t  Ce(0)  2 r 0 for any K- type  O in In(0),  so tha t  M*(0) is an 

isomorphism. By our assumption,  clearly M* (0) R,~ (V2) = Rn (V2). 

Finally, suppose tha t  m = 2n and V is split. Then  V has as its complementary  

space V0 = 0, and we recall tha t  In(so) = Rn(V) in this case. But  then as at the 

beginning of our proof, 

(5.19) d imHom(In ( so ) ,  Rn(0)) = d imHom(In ( so ) ,  I,~(-so)) = 1, 
G G 
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and so both spaces are spanned by M*(so). Hence M*(so)Rn(V) = Rn(Vo). 
| 

PROPOSITION 5.10: Suppose that  n <_ m < 2n and that X I F  x : eEm/F . Then 

ker M*(s0, X) = R~(V1, X) n R~(V2, X). 

Note that this is 0 when So = O. 

n First, recall that  if So -- 0, then Proof." We are assuming that  0 < So < ~. 

In(O, X) = Rn(V1, )C) @ Rn(V2, X) is the sum of two irreducible, inequivalent sub- 

spaces. We noted in the preceding proof that  M*(0, X) is an isomorphism, so the 

kernel is 0 and we are finished in this case. 

The proof is by induction on n, so we note that  if n = 1 and n < m < 2n, 

then So = 0, and we are through. So we assume the result for Gn-1,  and for 

a l l m  with n -  1 _< m < 2 n - 2 .  I f n  < m < 2n, then by Proposition 5.6, 

I~(so) = R~(V1) + Rn(V2), suppressing mention of X. Here V1 ~ V2, and both 

spaces have complements. Also by the preceding Proposition, we have an exact 

sequence 

(5.20) 0 ---* r~(so) ---* In(so) A_~ Rn(V1,0) G Rn(V2,o) --~ O, 

where A is induced by M*(so), and Yn(so) is its kernel. Applying the (exact) 

N1-Jacquet functor to this, we obtain 

(5.21) 0 -+ Yn(so)N1 ~ I~(sO)N1 ~_~1 Rn(VI,o)NI �9 R~(V2,o)N~ ~ O. 

The exact sequences of Proposition 5.3 (1) and (2) split, so by considering the 

characters of GL(1) C M1, it is clear that  AN1 segregates into A1 | A2, where 

(5.22) In-I(SO -- �89 Rn- (Yf,o) �9 Rn-l(Yi,o) O, 

In-- (So + �89 --* Rn- (VI,o) e Rn-I(V2,o) --* O. 

Now A, �9 Homa~_l( In_l (So-  1), In- l ( �89  - s o ) ) ,  and by considering Theorem 

2.2 (1) and Proposition 5.8, one can see that  the basis for this Hom space can 

be constructed from M*(so - �89 composed with projection onto the two sub- 

representations Rn_I(V~',o ). Since A1 is surjective, it must in fact have the same 

kernel as M*(so - �89 The same statement is true for A2 and M*(so + 1). But 
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now n < m < 2n, so that  n - 1 < m -  2 < 2 ( n -  1), and so by our induction 

hypothesis, we have 

ker(A1) = Rn_x(V~) N R,~_x(V~) 

and 

so that  

ker(A2) = R~-I(V1) N Rn-I(V2), 

Yn(80)N1 ~ (Rn-l(Y~) n Rn_l(Y~)) 0 (Rn-l(Yl) CI Rn_I(V2)). 

As in [19], this implies that  Yn(So) = R~(V1) N R~(V2). | 

6. E x p o n e n t s  a n d  t h e  i n t e r t w i n i n g  o p e r a t o r s  

In order to complete our information about the composition series of I(s, ~) and 

to compute the action of the normalized intertwining operator M*(s, X) on the 

constituents, we consider the exponents of the constituents of In (s, X). Let B be 

the standard Borel subgroup of G containing the maximal torus 

(6.1) A = {re(a) 6 G]a = d i a g ( a l , . . . ,  an) for ai 6 E x }, 

and define the character PB of A by re(a) pB = 5B(a)�89 If re(a) E A is as above, 

one computes that  
1 3 1 

. . . .  I h I E ,  lallg la21g a (6.2) m(a)pB n-~ n-~ 

which we represent by writing 

RB = p B ( n )  = ( n  - 1 3 1)  ~ , n - -  ~ , . . . ,  ~ �9 

Let U = Un be the unipotent radical of B. We will compute the exponents 

of the constituents 7r of In(s, ~() along B, that  is, the characters # of A such 

that  re(a) u+v8 occurs in a decomposition of the Jacquet module lru into a sum 

of generalized eigenspaces. As in [19], we compute ~v by noting that  ~rv -~ 

(~N1)VnM1, and applying the U n M1 Jacquet functor to the exact sequences of 

Proposition 5.3. Note that  Un n M1 -~ Un-1 C Gn-1 under the identification 

M1 - GL(1, E) • Gn-1, and so as GL(1) • An-1 = An modules, we have 

(6.3) O--~2ll-S+~|189 ~I~(s,x)v~ 

X[I s+~ | X)U.-1 ~0. 
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There is a one-to-one correspondence between the exponents # of I,~(s, ~) and 

sequences (Cl , . . . ,  cn) of length n which occur as you move successively either 

left or right in the exact sequence above, setting ck equal to the GL(1) exponent 

minus ps(k) o n  the k th m o v e .  But in fact, one obtains 1 - s - (n2--~A) on the first 

left move, regardless of when this occurs, and similarly k - s -  ( - ~ )  on the k th left 

/~--+A) - n + (k - 1). move. The k th right move always produces a component s + ~ 2 

So the exponents are all "shuffles" of the components resulting from left moves 

with those resulting from right moves. Here we define a shuffle as follows: If 

an ordered sequence E of length n is divided into two ordered subsequences, 

E = (A; B), then a shuffle of E is a sequence which results from a permutat ion 

of E which preserves the relative ordering of the elements of A, and also those 

of B. 

PROPOSITION 6.1: The representation In(s, X) has 2 ~ exponents, which may be 
described as follows. For each r, with 0 < r < n, every shuffle of the n-tuple 

( 1 - s - ( ~ - ~ ) , 2 - s - ( n 2 - - - ~ l ) , . . . , r - s - ( ~ } - ) ;  

s + ( ~ } - ) - n , . . . , s + ( n ~ l )  - r - l )  

is an exponent. Moreover, these exponents are counted with multiplicity. 

When we compute the exponents for the spaces R~(V, ~(), the only difference 

is that  the maximum number of possible left moves is limited by the number of 

hyperplanes which can be removed from V. 

PROPOSITION 6.2: Let l be the Witt index of the Hermitian space V (the di- 
mension of a maximal isotropic subspace of V). Then the exponents of Rn (V, X) 

are obtained as follows. For each r with 0 < r < min(n, l), every shuffle of the 

n-tuple 

(1 - ( - ~ )  , 2 -  ( - ~ )  , . . . , r -  ( - ~ )  ; 

( m _ ~ l )  _n,...,(m2___~l) - r - i )  

is an exponent of R~(V, X); and, when counted with multiplicity, these are all of 
the exponents. 
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Now we must study the combinatorics of the exponents to proceed further. Let 

m+l for ease of notation, and for 0 < r < n, let P = --5- 

(6.4) A~=(1 -p ,  2 - p , . . . , r - p ) ,  

B~ = (p-  n ,p -  n+ 1 .. . .  , p -  (r+ 1)). 

As in Propositions 6.1 and 6.2, we see that  the shuffles of E~ = (At; B~) for 
m - - n  0 < r < n correspond to the exponents of the In(s, X) at So - 2 

Now consider the exponents corresponding to the submodules Rn(Vi, X) for 

n _< m <_ 2n. With m and n in this range, suppose that m is even. Then we let 

V1 be the split space composed of ~ hyperbolic planes, so that the Wit t  index 

of V1 is 9"  The other space V2 can be taken to be the direct sum of the unique 

2-dimensional anisotropic space with ~ - 1 hyperbolic planes, so that  the Wit t  
m index is T - 1. If m is odd, then the two possibilities both have Witt  index m-1 

2 ' 

and result from adding this many hyperbolic planes to an anisotropic space of 

dimension 1, whose form is specified by 1 E F x for V1, or a E F x ,.~ N ( E  x) for 

V2. So, to be uniform, we define 

(6.5) I = {all shuffles of Er for 0 < r < n, counted with multiplicity}, 

and (omitting mention of multiplicities from now on) 

(6.6) Rl = { all shuffles of E. for O < r < [ 2 ] } , 

R2 = { all shuffles of E~ for O < r < [ m -2 1]1, 

so that  I represents all exponents of In(s0, X) (and in fact, those of In(-so, X) as 

well), and Ri represents the exponents of Rn(V~, X) for i =- 1, 2 by the remarks 

above, and Proposition 6.2. We then let 

(6.7) Sl-={allshufflesofErfor [m221 

S2 = { all shuffles of E~ for [ ~ 1  < r < n } , 

so that  clearly I = R1 + $1 = R2 + $2, where + denotes the disjoint union, 

increasing multiplicities appropriately (and below, - denotes the difference of 

sets, again taking multiplicities into account). One then checks that  $1 represents 
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the exponents of R~(V2,0, ~(), and similarly for $2 and R~(VI,0, ~). In particular, 

note that  when m = 2n, V2 has no complementary space, and correspondingly, 

$1 = 9. We also let D denote the set of exponents of R~(V1, X) N Rn(V2, X). We 

then have the following combinatorial facts: 

PROPOSITION 6.3: Let n <_ m <_ 2n. Then 

Proof  

(1) $2 C R1 and S1 C R2. 

(2) I - $1 - $2 = R1 - $2 = R2 - S1, and if we call this last set D, then all 

sequences in D occur with multiplicity one. 

(3) D N S i = O  f o r i =  l,2. 

For n _< m < 2n, M* (so, X) induces an isomorphism 

(6.s) R~(V1, X)/(R,~(V1, X) N Rn(V2, X) ) ~- R~(VI,o, X) 

(by Propositions 5.8 and 5.10), and hence of the corresponding U-Jacquet 

modules. This implies that R1 - D = $2, which (with the analogous result 

R2 - D = $1) is equivalent to all statements from (1) and (2) save the one about 

multiplicity. (1) and (2) are also trivially checked in the case m = 2n. The 

assertion of multiplicity one for D together with (3) can be handled purely com- 

binatorially (as can the other results of (1) and (2) for that  matter) by following 

the blueprint of Proposition 6.2 of [19]. | 

PROPOSITION 6.4: I f  n < m <_ 2n and XIF• = e~/F, then 

ker M*(-so,  X) = Rn(Vl,o, X) �9 Rn(V2,0, X), 

imageM* (-s0,  X) = Rn(Vl, X) N Rn(V2, X). 

In particular, i f  m = 2n, then 

M , ~  n ker n( -~ ,~( )  = R,~(0, X), 

, / t  
image M,~(-~,  X) = R,~(V2, X). 

Proof: First, we may write I (so)v  = X ~ Y,  where Y is the direct sum of all 

generalized eigenspaces having exponents in D, and X is the sum of all spaces 

having exponents in I - D. Since all exponents of Y have multiplicity one, and 

are distinct from those of X, there is a small neighborhood of so on which we may 

write I ( s ) v  = X ( s )  @ Y(s) ,  where the exponents of X ( s )  and Y(s )  interpolate 
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those of X and Y, and they still have the characteristics just mentioned. Since 

I also represents the exponents of I,~(-so), we may do the same for I(s)v in a 

neighborhood of -So. Now fix any character # E D, and extend the correspond- 

ing eigenvector in Y(so) to an eigenvector fl(s) E Y(s) for #(s) by choosing a 

representative in In(so, X) and using this to define a standard section in In(s, X). 

f l (s)  may then be taken to be the image under the U-Jacquet functor of this 

section. Do the same for the eigenvector in Y ( - s )  corresponding to # ( - s ) ,  so 

that f 2 ( - s )  �9 Y(-s ) .  Now, we have induced operators M*(+s, X)u which must 

preserve the spaces Y(+s) C In(+s)u, respectively. So 

(6.9) M*(s)ufl(s) = c(s)f2(-s) 

M*(-s )v f2 ( - s )  = c'(s)fl(s) 

for some holomorphic functions c(s) and c'(s) defined in a neighborhood of So. 

Since fl(so) transforms according to p �9 D under the action of A, we see that  

M~(so)ufl(so) = 0 by recalling that the image of M~(so) has exponents equal 

to $1 U $2, which is disjoint from D (see Proposition 5.8). Hence c(so) = 0. But 

we also see that 

(6.10) c(s)c'(s) = 7(s) 7 ( - s )  
a(s) a(-s) '  

by the usual trick, and, as in the proof of Proposition 5.8, the expression above 

has a simple zero at s = so. Hence c'(so) ~ O, so that M~(-So)v is non-zero on 

Y(-so) .  But by Lemma 5A.1, Rn(VI,o) @ Rn(V2,0) C kerM*(-sb), so that  in 

fact these last spaces are equal. Finally, it follows from the disjointness of D and 

the Si that the image of M*(-so)u is Y(so) = (Rn(V1) N Rn(V2))u, from which 

we conclude that  image M* ( -so ,  X) = Rn (V1, X) A R n (V2, X)" II 

PROPOSITION 6.5: I fn  < m < 2n and XIF• = e'~/F, then Rn(V1, X) N Rn(V2, X) 
is the unique irreducible submodule of In (So, X). 

Proof'. Suppose that W C Rn(V1, X) n Rn(V2, X) C In(so, X) is irreducible and 

non-zero. Then as in the proof of Theorem 3.3, we may construct an operator 

~1: In(-so, X -1) --* W ~ --* O. But consider 

(6.11) q02: In(-So,~() ~ --~ In(-So, X -1) ----* W ~ , O. 

In fact, ~2: I,~(-so, ~) --* W is a surjective G-morphism, and we may regard 

~2 as lying in Homc(In(-So,~),In(so, X)). But now - ~  < - s o  < 0 so that  
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this Horn space is one-dimensional by Proposition 2.2, and hence ~2 is a 

non-zero multiple of M~(-s0,  )~). By the preceding proposition, this has im- 

age Rn(V1, X) VI Rn(V2, X) = W, and so this last space is irreducible. Uniqueness 

follows by Proposition 2.3. | 

PROPOSITION 6.6: If~[F• = 1, then kerM*(~,  X) = Rn(V2, X). 

Proof: This is easily seen from the fact that all exponents of In(~, X) have 

multiplicity 1, since I = $2 t3 D with D = $1 = the set of exponents of Rn(V2, X), 
]$2] = 1, and $2 N D = @. | 

7. Ske tch  of  p r o o f  for GL(2n, F) 

Finally, we sketch the proof of Theorem 1.3 of the introduction, which concerns 

the induced representation I(s,a) = Indap(al[ [~ | a21 IF ~) of G = GL(2n, F),  

where P is the standard GL(n) • GL(n) maximal parabolic. Let all notation 

be as in the paragraph immediately preceding Theorem 1.3. We also use the 

following convention from [2] and [36]: given a character ~/of F • and s E C, 

let ~(s) be the quasi-character x ~-* r/(x)lx[~. Consider the quasi-characters of 

GL(1, F) x . . .  x GL(1, F) (n copies) given by 

n--1 A1 ~-- (O.l(S ..~ - . ~ ) ,  O.1(8 _[_ 3--n),  " 'O'1( 8Jr- --5--)) '  and 2 "" 
3 - .  = + + + 

(we think of these either as sets of quasi-characters of F x, or as quasi-characters 

of the product of n copies of GL(1, F)).  In the notation of Bernstein and 

Zelevinsky, these are segments: sets of quasi-characters (or more generally, su- 

percuspidals) which are of the form (p, p(1),p(2), . . . ,  p(k)) for k > 0, where p 

is a quasi-character of F x (respectively, a supercuspidal). Corollary 2.9 of [36] 

tells us that  for any segment A composed of n quasi-characters, the represen- 

tation Ind GL(n'F) (A) has a unique irreducible subrepresentation Z(A). Here B 

is the standard (upper triangular) Borel subgroup of GL(n, F). It is easy to see 

(example 3.2 of [36]) that  in our situation 

Z(A1) ----- all [~ �9 Irr(GL(n, F)),  and 

Z(A2) --- a21 [F 8 �9 Irr(GL(n, F)),  

so that  our representation I(s, a) is in fact equal to Ind~(Z(A1) | Z(A:)) .  By 

Theorem 4.2 of [36], this representation is reducible if and only if the segments 



Vol. 98, 1997 DEGENERATE PRINCIPAL SERIES FOR U(n, n) 301 

A1 and A2 are linked: that is, if and only irA1 r As, and A1 r As, and AIUAS 

is a segment. Given our normalization of s and a, it is easily checked that  this 

happens precisely for (s, a) as given in item (1) of our Theorem 1.3. In addition, 

the length of the composition series and the  identification of one constituent as 

induced from a certain maximal parabolic are given in Proposition 4.6 of [36]. 

Now we assume, for the moment, that a -- al  = a2, and describe the re- 

lationship between the constituents at the points of reducibility and the Weil 

representation. We begin by considering the ring E = F | F with component- 

wise addition and multiplication, and with an involution given by x = Ix1, x2] 

5: = Ix2, xl]. We may identify F with the fixed field of the involution, and so nat- 

urally define a trace operator from E to F via T([xl ,x2])  = x l  + x2. Define two 

E-modules V and W with 'Hermitian' and 'skew-Hermitian' forms (respectively) 

via 

V ~- E m (col. vectors) and (a, b) = Ira1 �9 52, ta2"  bl], 

where a, b E V are written in the form a = [al, a2] E F m @ F m, 

W = E 2n (row vectors) and {c,d I = [clJtds ,  c2Jtdl],  

for c,d E W of the form c = [cl,c2] E F 2 n |  2n. 

(1.1). It is easily seen that the isometry groups H and 

V and W satisfy H -~ G L ( m , F )  and G ~- GL(2n, 

first factor'. As in the unitary case, we set W = V 

Here J is as in equation 

G of the respective spaces 

F)  by 'projection on the 

| W with a symplectic 

form over F given by <<,>>= T ( ( , ) |  Then H •  G forms a d u a l p a i r  in 

Sp(W),  and, corresponding to the complete polarization W = E n G E '~, there is 

a natural complete polarization W = V" G V" and a Schrodinger model ,.S(V n) 

for the Weil representation of the metaplectic cover of Sp(W). This projective 

representation now splits over both G and H: we write w for the restriction of 

the Well representation to H • G acting in the space s ( v n ) .  One then checks 

that  the mapping 

S ( V  n) ~ Indap(I I~ -~-~ |  -~-~) given by 

~ {g ~-* w(g)~(0)}, 

is well-defined, G-intertwiaing, and intertwines the natural action of H on the left 
m--n with the trivial action of H on the right. Setting so = 2 , we may then twist 

the image of the above map by (r so that  it lies in I(so,  a).  We denote this twisted 
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image in I(so,o) by Rn(m,a). Now for 1 _< m, there are only two possibilities 

for R,~(m, a): all of I(s,a), or the unique irreducible submodule guaranteed by 

Bernstein and Zelevinsky. 

To check that  Rn(m, (z) = I(so, a) when m > n, we use the argument of Propo- 

sition 4.3 (3) above. Because of the similar formulas for the Weil representation, 

this amounts to checking that the moment map 

Vi:b , X 

is surjective for m _> n. Here # is defined on all of V ~ just as in equation 

(4.8), and Vs~ b is the subset of V n on which # is submersive: which is to say 

Vs~ b = {x E V '~ ] dpx is surjective}. But there are natural isomorphisms V n ~_ 

M(m, n, F) x M(m, n, F) and X '~ M(n, F) which allow us to model # using 

#': M(m, n, F) 2 , M(n, F), 

[a,b], , ta.b. 

For m _> n, the set of [a, b] for which dpla,b] is submersive consists of those for 

which the matrix (a: b) E M(m, 2n, F)  has rank at least n. It is then easy to 

see that  #: V~ b --4 X is surjective, and hence that Rn(m,a) = I(so, a). Also, 

by using the method of Proposition 3.1 of [19], one may show that R,~(rn, o') is 

irreducible and unitarizable if 1 < m < n (even as a representation of P),  so that  

it must in fact be the unique irreducible subrepresentation o f / ( so ,  a) in these 

cases. The case m = 0 is obvious. 

Next, we briefly describe the normalization of the intertwining operator 

M(s, a): I(s, a) ---* I ( - s ,  5"), which is defined in equation (1.9) of Theorem 1.3. 

We again let a = (al ,a2)  be arbitrary. As in the unitary case, it is useful to 

study the operator M(s,a) applied to special sections of the form O~(s), for 

e S(X)  (see equation (3.12)), writing X = M(n,F). An easy computation 

along the lines of Proposition 3.1 shows that 

M(s, a)O~(w~) = al(x)a2(x)-l[xl2F 8 ~(x) [xl~, 

and so we are led to study zeta integrals of the form 

f x  dx 
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for characters X of F x . Here, X is a vector space on which GL(n, F)  acts by left 

multiplication, and the non-singular matrices Y C X form a single GL(n, F)- 

orbit. So we again have a pre-homogeneous vector space (GL(n, F),  X, Y) and 

a functional equation for Z(s, ~() as in [8]. Igusa computed the gamma factor in 

a second paper [9], and, translating his results, we have the following functional 

equation: 

Z(8, X, ~) = F ( s ,  X)" Z(Tt -- 8, x - l ,  ~) ,  

where ~ is defined appropriately (using our additive character r and where the 

gamma factor is given by 

n--1 

= 1-I p F ( s  - i, x ) .  
i=0 

By Rallis's Lemma, the operator M(s, a) has the same zero and pole behavior 

as Z(2s, X~), writing Xo = al/a2, and we may analyze this last by the method 

of [24]. From this, we deduce that the correct normalization consists of dividing 

by the full numerator of F(2s, Xo) (even though all but one of the zeta functions 

appearing there, cf. equation (3.11), could be canceled with those in the denom- 

inator, leaving exponential factors). So the correct normalization of M(s, a) is 

as given in Theorem 1.3. Also note that we may define a generalized Whittaker 

integral on I(s, a) via 

(W(s)O)(g) -- Ix O(wnn(b)g, s)r db 

(there is just one to consider). This has a functional equation 

w ( - s )  o M(8, ~) = r(28, x~). w(~), 

with the same gamma factor given above. As before, we see that  

r(2s, xo) r(-2s,  x; ~) 
(7.1) M*(-s,(r) oM*(s,a)= a(s, xo) a(-s,x;1) ' 

and so M*(s, a) cannot be surjective if (s, a) is a point of reducibility of I(s, a) 
(these points are precisely the zeros of the right hand side of (7.1)). This tells 

us that  the kernel and image of M*(s, X) must be as claimed, since M*(s, a) is 

non-zero and non-surjective at the points of reducibility. 
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